Part Number Hot Search : 
IR908C G3020 C1510 N3906 K9GAG08 ACHIP 19200000 WR400
Product Description
Full Text Search
 

To Download IR3080MTR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  data sheet no. pd94705 ir3080 xphase tm vrd1 0 control ic with vc cvid & overtemp detect des cript ion the i r 30 80 control i c co mbined with an ir xphase tm pha s e i c provide s a fu ll featured an d flexible way to impleme n t a com p lete v rd 10 po we r solution. t he ?c o n trol ? ic provide s overall syste m co ntrol an d interfaces wit h any num be r of ?pha se i c s? which ea ch d r ive an d monitor a si n g le ph ase of a multipha se conve r ter. th e x phase tm architectu re result s in a po wer su pply th at is smalle r, less expe nsiv e, and e a si er to desig n whil e providin g hi gher effici en cy than conve n tional ap pro a ch es. the ir30 80 i s intend ed fo r desktop ap plicatio ns a n d in clu d e s the vccvid a nd vrhot functio n s requ ired for pro per system operation . feat ure s ? 6 bit vr10 co mpatible vid with 0.5% overall sy stem accuracy ? 1 to x phase s operatio n wit h matchin g p hase ics ? on-chip 7 0 0 ? vid pull-up resi stors with vid pull-up v o ltage inp u t ? programma bl e dynami c vid slew rate ? no di scha rge of output cap a citors du rin g dynamic vid step-d o wn (can be di sabl e d ) ? +/-30 0 mv diff erential rem o te sense ? programmabl e 150khz to 1mhz oscillat o r ? programma bl e vid offset and lo ad lin e output impe dan ce ? programma bl e softstart ? programma bl e hiccu p ove r -curre nt protecti on with delay to preve n t false trigge ring ? simplified powergoo d provides in dication of prope r o peratio n and avoids fal s e trigge rin g ? operates fro m 12v input wi th 9.1v un der-voltage l o ckout ? 6.8v/5ma bias re gulato r p r ovide s syste m referen c e voltage ? 1.2v @ 150m a vccvid li near reg u lat o r with full protection ? vccvid po wergo od with p r og ramm able delay gates conve r ter o p e r ation ? programma bl e conve r ter over-temp e rature detecti on and o u tpu t ? small thermal l y enhan ced 32l mlpq p a ckag e package pin out oc s e t 17 iin 18 v drp 19 fb 20 eaou t 21 bbf b 22 vbi as 23 vc c 24 lgn d 25 rm p o u t 26 h o t set 27 vr h o t 28 vi d 4 9 ro s c 15 vi d p g d 31 ss / d e l 29 vd ac 16 tr m 4 14 tr m 3 13 vosn s- 12 tr m 2 11 tr m 1 10 pw r g d 30 vi d 3 8 vi d 2 7 vi d 1 6 vi d 0 5 vi d 5 4 vi d p w r 3 v ccv id 2 vi d f b 1 vi d d e l 32 ir3080 control ic page 1 of 41 9 /30/04
ir3080 ordering inforamation dev i c e o r d e r qu antit y ir308 0mt r 3000 p e r reel * ir3080 m 100 pie c e stri ps * sa mp le s only absolute maximum ratings operating ju nction te mpe r ature?? ? ??..150 o c storage te m peratu r e ran ge?? ??? ??.-6 5 o c to 150 o c esd rating ???? ?? ???? ?? ??..hbm cl ass 1c jede c stan dard pin # pin name v ma x v mi n i sour ce i sink 1 v i d f b 2 0 v - 0 . 3 v 1 m a 1 m a 2 v c c v i d 2 0 v - 0 . 5 v 4 0 0 m a 5 0 m a 3 v i d p w r 2 0 v - 0 . 3 v 1 m a 4 0 0 m a 4 - 9 v i d 0 - 5 2 0 v - 0 . 3 v 1 0 m a 1 0 m a 10, 11, 13,14 trm1 -4 do n o t con n e ct do n o t con n ec t do not connec t do not connec t 1 2 v o s n s - 0 . 5 v - 0 . 5 v 1 0 m a 1 0 m a 1 5 r o s c 2 0 v - 0 . 5 v 1 m a 1 m a 1 6 v d a c 2 0 v - 0 . 3 v 1 m a 1 m a 1 7 o c s e t 2 0 v - 0 . 3 v 1 m a 1 m a 1 8 i i n 2 0 v - 0 . 3 v 1 m a 1 m a 1 9 v d r p 2 0 v - 0 . 3 v 5 m a 5 m a 2 0 f b 2 0 v - 0 . 3 v 1 m a 1 m a 2 1 e a o u t 1 0 v - 0 . 3 v 1 0 m a 2 0 m a 2 2 b b f b 2 0 v - 0 . 3 v 1 m a 1 m a 2 3 v b i a s 2 0 v - 0 . 3 v 1 m a 1 m a 2 4 v c c 2 0 v - 0 . 3 v 1 m a 5 0 m a 2 5 l g n d n / a n / a 5 0 m a 1 m a 2 6 r m p o u t 2 0 v - 0 . 3 v 1 m a 1 m a 2 7 h o t s e t 2 0 v - 0 . 3 v 1 m a 1 m a 2 8 v r h o t 2 0 v - 0 . 3 v 1 m a 5 0 m a 2 9 s s / d e l 2 0 v - 0 . 3 v 1 m a 1 m a 3 0 p w r g d 2 0 v - 0 . 3 v 1 m a 2 0 m a 3 1 v i d p g d 2 0 v - 0 . 3 v 1 m a 2 0 m a 3 2 v i d d e l 2 0 v - 0 . 3 v 1 m a 1 m a page 2 of 41 9 /30/04
ir3080 electrical specifications unle ss otherwise sp ecifie d, thes e spe c ification s appl y over: 9.5v ? v cc ? 14v, 2.0v ? vidpwr ? 5.5v and 0 o c ? t j ? 100 o c par a mete r t e s t con d i t i o n m i n t y p m a x u n i t vdac re fer e nce sys t em set-point ac c u rac y -0.3v ? vos n s- ? 0.3v, connec t fb t o eaout, meas ure v(eaout) ? v(vosns-) d e viation from table 1. applies to all vid codes. 0 . 5 % source curre n t r rosc = 41.9k ? 6 8 8 0 9 2 p a sink cu rrent r rosc = 41.9k ? 4 7 5 5 6 3 p a vid input thresh old 500 600 700 mv vid pull-up resi stors 500 700 1000 ? reg u lation detect co mpa r ator input offset - 5 0 5 m v regulation detec t to eaout delay 1 3 0 2 0 0 n s bbfb to fb bias current ratio 0 . 9 5 1 . 0 0 1 . 0 5 p a/ p a vid 11111x blankin g del a y measure time until pwrg d drive s low 800 ns vid step do wn d e tect blankin g tim e measure fro m vid inputs to eaout 1.7 p s vid down bb clamp volta ge percent of vdac voltage 70 75 80 % vid down bb clamp curre n t 3.5 6.2 12 ma error amplifier input offset voltage con n e c t fb to eaout, measure v(eaout ) ? v(dac). from table 1. applies to all vid code s an d -0.3v ? vosns- ? 0. 3v. note 2 - 3 4 8 m v fb bias cu rrent r rosc = 41.9k ? - 3 1 - 2 9 . 5 - 2 8 p a dc g a in note 1 90 100 105 db gain-b and wi dth produ ct note 1 4 7 mhz source curre n t 0.4 0.6 0.8 ma sink cu rrent 0.7 1.2 1.7 ma max voltage vbias?veaout (refe r en ced to vbias) 125 250 375 mv min voltage normal op era t ion or fault mode 30 100 150 mv vdrp buffer amplifier input offset voltage v(vdrp ) ? v(iin), 0.8v ? v(iin) ? 5.5v -8 0 8 mv input voltage rang e 0.8 5.5 v bandwi d th (-3db) note 1 1 6 mhz slew rate 10 v/ p s iin bias cu rrent -2.0 -0.75 0 p a page 3 of 41 9 /30/04
ir3080 par a mete r t e s t con d i t i o n m i n t y p m a x u n i t oscillator switchin g fre quen cy r rosc = 41.9k ? 2 5 5 3 0 0 3 4 5 k h z peak voltag e (5v typical, measured a s % of vbias) r rosc = 41.9k ? 7 0 7 1 7 4 % valley voltage (1v typical, measured a s % of vbias) r rosc = 41.9k ? 1 1 1 4 1 6 % vbias re gulator output voltag e -5ma ? i(vbias) ? 0 6.5 6.8 7.1 v curre n t limit -30 -15 -6 ma soft sta r t an d delay ss/del to fb input offset voltage with fb = 0v , adjus t v(ss/del) until eaout drive s high 0 . 8 5 1 . 3 1 . 5 v cha r ge cu rre nt 40 70 100 p a disch a rg e cu rre nt 4 6 9 p a cha r ge/ disch a rge cu rre nt ratio 1 0 1 1 . 5 1 3 p a/ p a cha r ge volta ge 3.7 4.0 4.2 v delay compa r ator t h re sh o l d relative to charg e voltag e 70 90 110 mv disch a rg e co mparator thre sh old 1 5 0 2 0 0 2 5 0 m v ov er-curren t compa r ato r input offset voltage -10 0 10 mv ocset bias current r rosc = 41.9k ? - 3 1 - 2 9 . 5 - 2 8 p a pwrgd ou tput output voltag e i(pwrgd) = 4ma 150 400 mv lea kag e cu rrent v(pwrg d) = 5.5v 0 10 p a vccvid reg u lator output voltag e -150 ma ? i(vccvid) ? 0 1.145 1.200 1.215 v dro pout volta ge i(vccvi d ) = -20ma 130 200 mv i ( v c c v i d ) = -150 m a 0 . 8 1 . 0 v curre n t l i m i t - 3 0 0 m a vidfb bias curre n t -225 -150 p a vccvid po w e rgood vccvid t h re shol d voltage relative to re gulated vccvid output voltage 1 . 0 5 1 . 1 0 1 . 1 3 v cha r ge cu rre nt 30 66 90 p a disch a rg e cu rre nt 4 7 11 ma cha r ge volta ge 3.7 4.0 4.2 v delay compa r ator t h re sh o l d relative to charg e voltag e 65 90 115 mv vidpgd out put voltage i(vidpgd) = 4ma 150 400 mv vidpgd le a k ag e cu rrent v(vidpgd) = 5.5v 0 10 p a page 4 of 41 9 /30/04
ir3080 par a mete r t e s t con d i t i o n m i n t y p m a x u n i t vcc under - voltage loc kout start thre sho l d 8.6 9.1 9.6 v stop thre sho l d 8.4 8.9 9.4 v hysteresi s start ? stop 150 200 300 mv gener a l vcc sup p ly curre n t 8 11 14 ma vidpwr su p p ly current vid0-5 o pen, i(vccvid) = 0 400 550 1000 p a vosns- current -0.3v ? vos n s- ? 0.3v, all vid codes -5.5 -4.5 -3.5 ma vrho t com p arat or hotset bia s cu rr ent -2 -0.5 1 p a output voltag e i(vrhot) = 2 9 ma 300 400 mv vrho t lea kage current v(vrhot ) = 5.5v 0 10 p a thre sh old hy stere s i s t j ? 85 o c 3 6 1 0 o c m i n t y p m a x thre sh old vo ltage (incre asi ng te mperature ) t j ? 85 o c 4.73mv/ o c x t j + 1.176v 4.73mv/ o c x t j + 1.241v 4.73mv/ o c x t j + 1.356v v not e 1: gu a r antee d by de sign, but not tested in p r od uction not e 2 : vdac output is tri mmed to co m pen sate for e rro r amplifier input offsets errors page 5 of 41 9 /30/04
ir3080 pin des c ription pin# pin symbo l pin descri ption 1 vidfb feedb ack to the vccvi d regulat o r . con nect to the vccvid o u tpu t. 2 vccvid 1.2v/150ma reg u lator o u tput. can also drive extern al pass tran si stor to minimi ze on-chip p o we r dissipatio n 3 vidpwr powe r for vid pull-u p re si stors and v c cvid re gulat or 4-9 vid0-5 inputs to vid d to a conve r ter. on -chip 700 ohm p u ll-up re sisto r s to vidpwr pi n are in clud ed. 10, 11, 13,14 trm1 -4 used for p r e c ision p o st-pa c kage trimmi ng of the vdac voltage. do not ma ke any con n e c tion to these pin s . 12 vosns- remote se nse input. conn ect to gro und at the load. 15 rosc con n e c t a re sisto r to vosns- to progra m oscillator freque ncy an d fb, ocset, bbfb, and vdac bia s currents 16 vdac reg u lated vol t age pro g ram m ed by the vid inputs. current sen s ing and pwm operation a r e refere nced to this pin. co nne ct an external rc net work to vos n s- to program dynamic vid s l ew rate. 17 ocset program s the hiccup over-curre nt thre shold thro ugh an external re sisto r tied to vdac an d an internal curre n t source. ov er-cu r rent pro t ection can b e disa bled by con n e c ting th is pin to a dc voltage no greater than 6. 5v (do not flo a t this pin as improper operation will occur). 18 iin curre n t sense input from the phase ic(s). to en su re prop er o peration bia s to at least 25 0mv (don?t float this pin). 19 vdrp buffered iin signal. co nne ct an external rc n e two r k t o fb to program conve r ter output imped ance 20 fb inverting inpu t to the error amplifier. co nverter o u tpu t voltage is offset from the vdac voltag e throug h an external resi stor con n e c ted to the converter output voltage at the load an d an intern al curre n t sou r ce. 21 eaout output of the erro r amplifie r 22 bbfb input to the regulatio n det e ct co mpa r at or. con n e c t to conve r ter o u tput voltage and vdrp pin through resi sto r netwo rk to p r ogra m re cove ry from vid step-d o wn. con n e c t to ground to dia b l e body braki n g tm durin g transitio n to a lowe r vid co d e . 23 vbias 6.8v/5ma re gulated o u tpu t used a s a sys tem refe ren c e voltage for internal ci rcu i try and the pha s e ics 24 vcc powe r for internal circuitry 25 lgnd local gro und and ic su bst r ate co nne cti on 26 rmpo ut oscillator out put voltage. used by pha s e ics to pro g ram pha s e delay 27 hotset inverting inpu t to vrhot compa r ator. conne ct re sist or divide r fro m vbias to lgnd to prog ram v r hot thre sh old. diod e or thermi stor ma y be sub s tituted for lower resi sto r for en han ced/remot e temperat ure sen s in g. applying a voltage exce edin g approximatel y 7.5v disabl es the o sc ill ator for facto r y testing. 28 vrho t open colle ct or output of the vrho t compa r ator. conne ct extern al pull-u p . 29 ss/del controls con v erter softsta rt, power g o od, and over-curre nt dela y timing. co nne ct an external capa citor to l g nd to prog ram the timing . an optional resi sto r ca n b e adde d in se ri es with the ca pacito r to red u ce the ove r -curre nt delay time. 30 pwrgd open colle ct or output that drives lo w du ring softsta rt and any external fault con d ition. co nne ct externa l pull-up. 31 vidpgd open colle ct or output of the vccvi d powe r goo d ci rcuit r y. conn ect external p u ll- up. 32 viddel con n e c t an e x ternal ca pa citor to lgnd to prog ram th e vccvid po wer good d e l a y page 6 of 41 9 /30/04
ir3080 syst em theory of operat ion xphase tm ar chitec ture the xphas e tm architectu re is de signe d for multipha se interle a ved buck convert e rs whi c h a r e used i n appl ication s requi rin g sm all si ze, de si gn flexibility, low voltage, high cu rrent and fa st tran sient respon se. the a r chitecture ca n control converters of any pha se number where flexibility fa cilitates the desi gn trade-off of multiphase converters. the scala b le architectu re can be ap plied to other appli c ation s which requi re hig h curre n t or mu ltiple output voltage s. as sho w n i n figure 1, th e xphase tm archite c ture co nsi s ts of a control i c a nd a scal able array of ph ase converte rs each usin g a single pha s e ic. the co ntrol ic com m unicates with the phase ics throug h a 5-wire anal o g bus, i.e. bias voltage, pha se timin g , avera ge cu rr ent, erro r am plifier o u tput, and vid volta ge. th e cont rol ic in co rpo r ates al l the system functio n s, i.e. vid, pwm ramp oscillato r, erro r ampli f ier, bias voltage, and faul t protection s etc. th e phase i c imp l ements th e functio n s req u i r ed by the co nverter of e a c h ph ase, i. e. the gate driv ers, p w m co mparator and latch, over-volta ge protection, an d curre n t sen s i ng and sha r in g. there is no unu sed o r re dund ant silicon with the xphase tm archite c ture co mpared to others su ch a s a 4 phase controlle r tha t can be con f igured for 2, 3, or 4 ph a s e o p e r ation. pcb layo u t is e a si er sin c e the 5 wire bu s eliminate s the need for p o int-to-point wirin g betwe en the control ic and ea ch pha s e. the criti c al ga te drive an d curre n t sen s e conn ectio n s are sho r t and local to the phas e ics. this improv es the pcb layout by lowering th e para s itic in du ctan ce of the gate drive ci rcuits a nd re d u cin g the noi se of the cu rrent sen s e sig nal. 0. 1uf rc s ccs ci n 0. 1uf rc s ccs vo u t + 12 v v o ut s e ns e - vo u t - vi d 3 vi d 0 vi d 4 v o ut s e ns e + vi d 2 v c c p w rg d vr h o t vi d 1 vi d 5 >> bias vol tage >> vid volt age << curr ent sens e cu rren t sh are >> phas e ti ming ad di tio na l ph as es co ut ir 308 0 co ntr ol ic >> pwm cont rol cu rren t sh are inp ut /ou tp ut ir 308 6 ph ase ic co ntr ol bu s ir 308 6 ph ase ic vc c v i d (1. 2 v@150m a) vi d pw r g d 3. 3 v figure 1. system block di agra m page 7 of 41 9 /30/04
ir3080 pwm con t ro l method the pwm blo ck diag ram of the xphase tm architectu re is sho w n in f i gure 2. fee d - forward volta ge mo de cont rol with trailing ed ge modulatio n is used. a high -gain wide -ba ndwi d th voltage type error amplifier in the co ntrol ic is use d for the voltag e cont rol loo p . an external rc circuit co nne ct ed to th e input voltag e and g r ou nd is used to progra m the slop e of the pwm ram p and to provide the feed-forward co ntrol at each ph ase. the pwm ramp slope will chang e with the in put voltage an d automatically comp en sate f o r chan ge s in the input volt age. th e inp u t voltage ca n ch ang e due to variati ons in th e sil v er box outp u t voltage or due to wi re a nd pcb-t r ace voltage dro p related to ch ange s in load current. + - 10 k + - sh ar e ad ju s t er ro r a m p lif ie r cur re nt sen se amp li fie r x34 x 0 .91 2 0mv + - + - + - 10 k sh ar e ad ju s t er ro r a m p lif ie r cur re nt sen se amp li fie r x34 2 0mv x 0 .91 + - + - + - + - + - da ci n p w mr mp bi as i n ra m p i n - ra m p i n + ga t e h sc o m p i s ha re cs in + ga t e l ea i n cs i n - sy st em re fe ren ce vo lt age enab le clo ck pul se gen er ato r body brak ing comp arat or ram p dis ch arg e cla mp pw m la tc h s res et domin ant ph as e ic r pw m c omp ar ato r r drp rp w m rm p rp hs 2 cs co m p + - rp hs 1 + - + - rcs rv f b + - cp w m rm p cs co m p cc s rp w m rm p rcs + - cp w m rm p + - + - cc s rp hs 2 rp hs 1 + - gn d vo u t bi as i n vd ac vb i a s da ci n p w mr mp ra m p i n + vo s n s- vo s n s+ v o sn s- i s ha re ra m p i n - ii n vd r p ea i n ga t e h sc o m p cs i n - cs in + ga t e l ea o u t rm p o ut vi n fb ir os c sy st em re fe ren ce vo lt age vda c body brak ing comp arat or ram p dis ch arg e cla mp enab le clo ck pul se gen er ato r v bia s r egu la tor if b vdr p amp 50% dut y cyc le ra m p g e ne ra t o r vva lley vpe ak e rro r am p r s res et domin ant pw m la tc h ph as e ic cout co nt rol i c pw m c omp ar ato r figure 2. pwm block di agra m freque nc y a nd phase ti ming contro l the o scill ator is located in the co ntrol i c an d its fre q uen cy is p r og ramma ble fro m 150 khz to 1mhz by an external resi sto r . the output of th e oscillato r i s a 5 0 % dut y cycl e tri a n g le waveform with p e a k and valley voltages of approximatel y 5v and 1v respe c tively. this si gnal i s used to p r ogra m both t he switchi ng freque ncy a n d pha se timing of the phase ics. t he pha s e i c i s p r og ramm e d by re si stor divider r phs1 and r phs2 conne cted bet wee n the vbias refere nce volta ge a nd the ph ase ic lg nd pi n. a co mp ara t or in the p h ase i c s dete c ts the cro ssi ng of the oscillator wav e form over th e voltage gen er ated by the resi sto r divid e r and tri gge rs a clo c k pul se that starts t he pwm cycle. the p eak an d valle y voltages track the vbias vo ltage red u cin g potenti a l phase ic timing errors. figure 3 sho w s the p hase timing for a n 8 pha se converte r. note th at bot h sl ope s of t he tria ngle waveform ca n be u s ed for pha se timing by swa ppin g the rmpin+ a nd rmpin? p i ns, as sho w n in figure 2. page 8 of 41 9 /30/04
ir3080 ramp (from control ic) clk1 vvalle y (1.00v) phase ic clock pulses vph ase1&8 (1.5v) vph ase3&6 (3.5v) vph ase2&7 (2.5v) vph ase4&5 (4.5v) vpeak (5.0 v) clk2 50% ramp duty cycle clk3 clk4 clk5 clk6 clk7 clk8 slope = 80mv / % dc slope = 1.6mv / ns @ 200khz slope = 8.0mv / ns @ 1mhz figure 3. 8 phase oscillator waveform s pwm oper ation the p w m co mparator i s lo cated in the phase ic. upo n re ceivin g a clo c k pul se, t he pwm latch is set; the p w m r m p voltage begi ns to increase; the low side driver i s turned off, and the high side dri v er is then turned on after the non- overlap time. when the p w m r mp voltage exceed s the error a m plifier? s out put voltage, the pwm latch is re set. this turns off the high sid e driver an d then turn s on the lo w sid e driver after th e non-overla p time; it activates the ramp di scha rge cla m p, which qui ckly discha rge s th e pw m r mp cap a cito r to t he vda c vol t age of th e control i c until the next clo ck p u lse. the pwm lat c h is reset dominant allo wi ng all pha se s to go to zero duty cycle wi thin a few tens of nano se cond s in respon se to a load step decrea s e. ph ase s can overlap and go to 100% d u ty cycle in re spo n se to a load ste p increa se with turn -on gate d by the clo c k pul se s. an erro r amplifie r outp u t volta ge g r eate r th an the co mm on mo de input range o f the pwm compa r ator re sults i n 10 0 % duty cycle reg a rdl e ss o f the voltage of the pwm ramp. thi s arrang ement guarantee s the erro r amp lifier is always in cont rol a nd ca n dema nd 0 to 100% duty cycle as req u ire d . i t also f a v o r s re sp on se t o a loa d st ep d e cr ea se w h ic h is a ppropri a te given the low o u tput t o inp u t voltag e ratio of most sy stems. the inducto r current will in cre a se mu ch more rapidly than de crea se in resp on se to load tran sie n ts. this control method is de sign ed to p r o v ide ?sin gle cycle tran sient re sp on se? where the ind u c tor current chang es in respon se to l oad tra n sie n t s within a si ngle switchin g cycle m a ximizing th e effectivene ss o f the powe r train a n d minimizi ng th e output cap a citor re quire ments. an a dditional advantage of the archite c ture is that diff eren ce s i n grou nd o r inp u t voltage at the pha se s ha ve no effect on operation si nce the p w m ramp s are re feren c ed to v d ac. figure 4 depi cts pwm o p e r ating wavefo rms u nde r variou s co nditio n s. page 9 of 41 9 /30/04
ir3080 ph ase i c cl ock pu lse eai n vda c pw mrm p ga teh ga tel s tea dy -st at e o per at ion d uty c y c le in cre as e d ue to l oad i ncr ea se d uty c ycl e dec re as e d ue to vi n inc re as e ( fee d- for wa rd) d u t y c y c l e de cr eas e due t o loa d d e c rea se ( bod y bra ki ng) o r fau lt ( v c c u v , v ccv id uv , ocp , vi d=1 11 11x ) st ea dy- st ate op er ati on 91 % v d a c figure 4. pwm op eratin g wavefo rms body braking tm in a conventi onal syn c h r o nou s buck co nver ter, the minimum time requi red to redu ce the current in the indu ctor in respon se to a load step d e c re ase is; o min max slew v i i l t ) ( *  the sl ew rate of the ind u ctor cu rrent can be sig n i ficantly incre a se d by turn ing off the synchrono us rectifier in respon se to a loa d step decrea s e. th e switch n o d e vo ltage is then fo rced t o de cr ea se until cond ucti on of th e synchro nou s re ctifier?s bo dy diode occu rs. t h is i n creases th e vo ltage a c ro ss the indu ctor from vout to vout + v bod y di ode . the minimu m time requi re d to red u ce the cu rre nt in the indu ct or in respon se to a lo ad transi ent decrea s e i s n o w; bodydiode o min max slew v v i i l t   ) ( * since th e vol t age d r op i n t he bo dy dio d e is often hi g her th an o u tp ut voltage, th e indu cto r cu rre nt sle w rat e can be increa sed by 2x or more. this patent pendi ng te ch nique i s refe rre d to a s ?b ody braki ng? and i s a c co mplish e d throug h the ?0% duty cy cl e co mpa r ato r ? lo cated i n th e ph a s e ic. if the error a m plifier?s outp u t voltage drop s bel ow 91% of the vdac voltage this co mpa r at or turn s off the low si de gat e driver. lossles s av erage indu ctor curre nt s e nsing inducto r current ca n be se nse d by conn ecting a serie s resi st or and a ca pa citor n e twork in pa rallel with th e i ndu ctor and mea s u r in g the voltage across the ca pacito r , as sh own in fig u re 5. the equati on of the sen s ing n e two r k i s , cs cs l l cs cs l c c sr sl r s i c sr s v s v    1 ) ( 1 1 ) ( ) ( usually the resi stor rcs a nd capa citor ccs a r e cho s en so that th e time con s tant of rcs a nd ccs eq ual s the tim e con s tant of the in du ctor whi c h i s th e indu ctan ce l over the i n d u ctor dcr. if the two tim e con s tants match, th e voltage a c ro ss ccs is prop ortional to th e cu rrent thro ugh l, a nd th e se nse ci rcu i t can b e tre a t ed as if o n ly a se nse resi sto r with the value of r l was u s ed . the mi smat ch of the tim e const ants doe s not affect the m e a s u r eme n t of indu ctor dc current, but affects the a c compon ent of the indu ctor current. page 1 0 of 41 9 /30/04
ir3080 v l l r l i v l o r c cs cs c o cu rren t v s c c sense a m p csout figure 5. in ducto r cu rren t sensing an d current sen s e amplifier the advanta ge of sen s in g the indu cto r cu rre nt versu s high side or low si de sen s in g is th at actual out put curre n t being delive r ed to the load is obtaine d rather than pea k or sa m p led inform ation about the switch cu rre nts. the output voltag e ca n be po si tioned to m e et a load line based o n re al time inform ation. except for a sen s e resi stor i n seri es with th e indu cto r , this is the o n ly sen s e meth od that can suppo rt a sing le cy cl e tra n sient re sp on se . othe r method s provide no inform ation duri ng e i t her load in crease (lo w sid e sen s in g) o r load de crea se (high side sensi ng). an additional proble m associate d with pea k or valle y current mo de co ntrol for voltage posit ioning i s that they suffer from pea k-to -averag e erro rs. the s e e r rors will sh ow in many wa ys but one e x ample is th e effect of freque ncy variation. if the freq uen cy of a particul a r unit is 10 % low, the p eak to p e a k indu ctor curre n t will be 10 % large r and the output im peda nce of the c onverte r will drop by about 1 0 %. variation s in indu ctan ce, current sen s e amplifie r band width, p w m pro p d e l a y, any ad de d sl ope com pen sa tion, i n put voltage, and output v o ltage are all additio nal sou r ces of pe ak-to - ave r ag e errors. current sense amplifier a high sp eed differential cu rre nt sen s e a m plifier is lo cated in the p hase ic, as shown in figu re 5. its gain d e crea se s with in cre a si ng temp eratu r e a nd i s no minally 34 at 25oc an d 29 at 125o c (-1 470 p p m/oc). this red u cti on of ga i n tends to co m pen sate the 3850 ppm/o c increa se in i ndu ctor dcr. since in m o st de sign s th e phase ic j unctio n is hotter than th e indu ctors th ese t w o effe cts tend to ca ncel su ch th a t no addition a l temperature comp en satio n of the load line i s re quire d. the cu rrent sen s e amplifi e r ca n a c cep t positive differ ential inp u t up to 1 00m v and ne gati v e up to -20 m v befo r e clippi ng. the output of the curre n t se nse amplifier i s su mmed with the da c volta ge and se nt to the co ntrol ic and other pha s e s throug h an o n -chip 1 0 k ? resi sto r co nn ected to the i s hare pi n. the ishare pins of all the phase s are tie d toget her and th e voltage o n the sha r e bu s re pre s ent s the averag e current thro ugh a ll the indu cto r s an d is use d by the control ic for voltage posit i oning a nd current limit prot ection. av erage cur r ent shar e l oop curre n t sh ari ng bet wee n p hases of the conve r ter i s a c hiev e d by th e avera ge cu rre nt sh are l o op in e a ch phase ic. the o u tput of the current sense am plifie r is compa r ed with the share bu s le ss a 20mv offset. if current in a pha se i s smalle r tha n the average current, the sh are a d ju st am plifier of the p hase will acti vate a cu rren t sou r ce that redu ce s the slope of i t s pwm ram p thereby in crea sing its d u ty cy cle and output curre n t. the cro ssover freq uen cy of the curre n t share loop can be prog ram m ed with a capa ci tor at th e scomp pin so t hat the sh are loop do es no t intera ct with the outp u t voltage loo p . page 1 1 of 41 9 /30/04
ir3080 ir3080 theory of operati o n block diagra m the block dia g ram of the ir30 80 is sho w n in figu re 6, and sp ecifi c features a r e discusse d in the followin g se ction s . + - + - + - + - + - + - + - + - + - + - + - + - + - 8.9v + - + - + - + - + - + + - + - bbfb vosns- iin ocset vid3 vid5 vcc vidfb vrhot vid2 vid4 rmpout vdrp rosc vidpwr ss/del vid1 vidpgd pwrgd vbias vid0 hotset vdac lgnd fb eaout vccvid viddel irosc irosc vbias irosc irosc irosc irosc irosc i r o s c irosc irosc irosc irosc irosc disable vrhot comparator 6ua 50% duty cycle vccvid comparator discharge comparator + vid control vid = 11111x on idischg voltage proportional to absolute temperature over current current source generator 1.0v vccvid regulator fault latch + r start iocset 70ua ramp generator 6.85v 66ua start stop over-current comparator ss/del discharge ifb 4v 9.1v - ivttdel softstart clamp 5.0v s set dominant stop vbias regulator vdrp amp ichg rosc buffer amp vcc uvlo comparator 0.2v 1.1v - vid delay comparator off delay comparator 90mv 1.3v vid step-down vid dac output error amp 1.2v figure 6. ir3080 blo ck diagra m vid cont rol a 6-bit vid v o ltage comp a t ible with v r 10, a s sho w n in ta ble 1, is availa ble at the vda c pin. a detail ed blo c k diagram of th e vid co ntrol circuitry can be foun d in f i gure 7. the vid pins are internally p u ll ed up to vidpwr pin throug h 700 ? re si stors. t he vid inp u t comp arator s, with 0.6v ref e ren c e, monit o r th e vid pi ns and control the 6 bit digital-to -ana log conve r te r (dac) who s e output i s sent to the vdac buffer amplifie r. t he o u tput of the b u ffer amplifier i s th e vda c pin. the v d ac v o ltage i s p o st -pa c k age tri mmed to co mpen sate fo r the inp u t offsets of th e erro r amplifi e r to provide a 0.5% s y stem se t-poin t accu ra cy. t he a c tual v d ac voltage d oes not d e termine the system a c curacy and h a s a wide r tolera nce. page 1 2 of 41 9 /30/04
ir3080 the i r 30 80 can a c cept chang es in th e vid co de while op erati ng a nd va ry the da c volt age acco rdin gly. th e sin k /so u rce capability of the vdac bu ffe r amplifier is prog ram m ed by the same extern al resi stor th at sets the oscillator freq uen cy. the sl ew rate of the voltage at the vdac pin can be adj us te d by an external ca pa citor betwe en vdac pi n an d the vos n s- pin. a resi stor co nne cte d in se ri es with this cap a citor is re quire d to compe n s ate the vdac buffer amplifie r. di gital vid tra n sition s re sul t in a sm oot h an alog tra n sition of th e vda c volt age and conve r ter out put voltage minimizi ng in rush current s in the inp u t and o u tput capa citors an d overshoot of the output voltage. it is desi r able to prevent n egative indu ct or cu rrents i n re spo n se to a req u e s t for a lowe r vid cod e . neg a tive curren t transfo rm s th e bu ck co nverter i n to a b o o st conve r ter and tr a n sfe r s e n e r gy fro m the output cap a cito rs b a c k into the input voltage. this e n e r gy can ca use voltage spikes and d a mag e the silver box or othe r co mpone nts u n l e ss they are spe c ifical ly design ed t o handl e it. furthe rmo r e, p o we r is wa st ed du ring th e transfe r of e nergy from th e output back to the in put. the ir3 080 i n clu d e s ci rcu i try that turns off both con t rol and syn c hron ou s mo sfets in respon se to a lo wer vi d cod e so th at the load cu rre n t instead of the indu cto r di scharge s the output ca pa ci tors. a lower vid cod e is d e tected by the vid st ep-d o wn dete c t co mpa r ato r whi c h m onitors t he ?fa s t? output of the dac (plu s 7 m v for noi se immunity ) comp ared to the ?slo w? o u tput of the vdac pin. if a d y namic vid step do wn i s d e tected, the b ody brake lat c h i s set and the outp u t of the erro r amplifie r is pulled d o wn to 75% of the dac voltage by the vid body bra k e cla m p. thi s trigge rs the b ody braki n g tm function, which turns off both high sid e and lo w sid e drivers in th e pha se ics. the conve r te r?s output vol t age ne ed s t o be m onito red an d comp ared to the v d ac volta ge to determi ne whe n to resume no rm al operation. unfortu nately , the voltage on t he fb pin can be pull e d down by its compe n satio n netwo rk durin g the su dden de crea se in the error amplifier?s ou tput voltage so an additio n a l pin bbfb i s p r ovide d . t he bbfb pin is conn ected to the co nv erter outpu t voltage an d vdrp pin with re sisto r s o f the sa me v a lue a s on th e fb pin and th erefo r e provide s an u n -corru p t ed re presen tation of co nverter outp u t voltage. the reg u lation d e tect comp arator compa r e s the bbfb to the vdac voltag e and re se ts t he bo dy bra k e latch rele asing the e r ror amplifier? s output an d al lowin g no rma l ope ration to re sume. bo dy braki n g tm duri ng a t r a n sition to a l o we r vid co de can b e disa bled by conne cting the bbfb pin to grou nd. 700 + - 0. 6v vi d inp ut co mp ara to rs (1 o f 6 s how n) - di git al to an alo g co nve rt er + vd ac bu ffe r am p isink isource "f as t" vd ac vd ac " slo w" vd ac + - + - vi d d o w n bb cl am p 75% + - + - + - 7mv r eset d omin ant s 1 .7u s b lan ki ng re gu lat io n de te ct co mp ara to r r bod y bra ke lat ch vid s tep -d own det ec t com pa rat or 80 0ns bl ank in g ibb fb + - v i d = 11 111 x det ect enable ir osc ( fro m cur re nt so urc e gen era to r) t o e r r or am p vo sn s - bb f b vi d 3 vi d 5 ea o u t vi d 2 vi d 4 vi d 0 vi d 1 vi d p w r figure 7. vid co ntrol blo ck diag ram page 1 3 of 41 9 /30/04
ir3080 processo r pins (0 = low, 1 = high ) processo r pins (0 = low, 1 = high ) vid4 vid3 vid2 vid1 vid0 vid5 vout (v) vid4 vid3 vid2 vid1 vid0 vid5 vout (v) 0 1 0 1 0 0 0.837 5 1 1 0 1 0 0 1.212 5 0 1 0 0 1 1 0.850 0 1 1 0 0 1 1 1.225 0 0 1 0 0 1 0 0.862 5 1 1 0 0 1 0 1.237 5 0 1 0 0 0 1 0.875 0 1 1 0 0 0 1 1.250 0 0 1 0 0 0 0 0.887 5 1 1 0 0 0 0 1.262 5 0 0 1 1 1 1 0.900 0 1 0 1 1 1 1 1.275 0 0 0 1 1 1 0 0.912 5 1 0 1 1 1 0 1.287 5 0 0 1 1 0 1 0.925 0 1 0 1 1 0 1 1.300 0 0 0 1 1 0 0 0.937 5 1 0 1 1 0 0 1.312 5 0 0 1 0 1 1 0.950 0 1 0 1 0 1 1 1.325 0 0 0 1 0 1 0 0.962 5 1 0 1 0 1 0 1.337 5 0 0 1 0 0 1 0.975 0 1 0 1 0 0 1 1.350 0 0 0 1 0 0 0 0.987 5 1 0 1 0 0 0 1.362 5 0 0 0 1 1 1 1.000 0 1 0 0 1 1 1 1.375 0 0 0 0 1 1 0 1.012 5 1 0 0 1 1 0 1.387 5 0 0 0 1 0 1 1.025 0 1 0 0 1 0 1 1.400 0 0 0 0 1 0 0 1.037 5 1 0 0 1 0 0 1.412 5 0 0 0 0 1 1 1.050 0 1 0 0 0 1 1 1.425 0 0 0 0 0 1 0 1.062 5 1 0 0 0 1 0 1.437 5 0 0 0 0 0 1 1.075 0 1 0 0 0 0 1 1.450 0 0 0 0 0 0 0 1.087 5 1 0 0 0 0 0 1.462 5 1 1 1 1 1 1 of f 4 0 1 1 1 1 1 1.475 0 1 1 1 1 1 0 of f 4 0 1 1 1 1 0 1.487 5 1 1 1 1 0 1 1.100 0 0 1 1 1 0 1 1.500 0 1 1 1 1 0 0 1.112 5 0 1 1 1 0 0 1.512 5 1 1 1 0 1 1 1.125 0 0 1 1 0 1 1 1.525 0 1 1 1 0 1 0 1.137 5 0 1 1 0 1 0 1.537 5 1 1 1 0 0 1 1.150 0 0 1 1 0 0 1 1.550 0 1 1 1 0 0 0 1.162 5 0 1 1 0 0 0 1.562 5 1 1 0 1 1 1 1.175 0 0 1 0 1 1 1 1.575 0 1 1 0 1 1 0 1.187 5 0 1 0 1 1 0 1.587 5 1 1 0 1 0 1 1.200 0 0 1 0 1 0 1 1.600 0 note: 3. output disabled (fault mode ) table 1 - volt age identifica t ion (vid) adap tiv e voltage posi tioning adaptive voltage po sitioni ng i s n eed ed to red u ce the output volta g e deviatio n s durin g lo ad t r ansi ents an d the po we r dissipatio n of the load wh en it is drawi ng maximum curre n t. the circuitry relat ed to voltage positioni ng i s sho w n in figure 8. re sistor r fb i s conne cted bet wee n the e r ror amplifie r?s inve rting inp u t pin fb and the conve r te r?s output voltage. an i n ternal curre n t so urce wh ose value i s prog ra m m ed by the same external re si stor that p r o g rams th e oscillator freq uen cy pump s curre n t into t he fb pin. th e error amplif ier force s the conve r ter? s o u tput voltage lowe r to maintain a b a lan c e at its inputs. r fb is sele cted to prog ram th e desi r ed amo unt of fixed offset voltage belo w the dac voltage. the voltage a t the vdrp pi n is a b u ffere d versi on of t he share bu s and rep r e s en ts the sum of the dac volt age a nd the avera ge i ndu ctor curre n t of all the phases. th e vdrp pi n is conne cted to t he fb pin through the re si stor r drp . since the e r ror amplifie r will force th e lo op to maintai n fb to be e q ual to the v d ac refe ren c e voltage, an a dditiona l curre n t will fl ow into the fb pin e qual to (vdrp-v d ac) / r drp . when the l oad cu rre nt i n crea se s, th e ada ptive positio ning v o ltage in crea se s a c cordin gly. more cu rrent flo w s th rough th e fee dba ck re si sto r r fb , an d m a ke s the output voltag e lowe r prop ortional to th e load curren t. t he positio ning voltage can b e pro g rammed by th e resi sto r r drp so that the dro op i m peda nce p r o duces the de sire d co nvert e r output i m p edan ce. the offset an d slo pe of the conve r ter o u tput impeda nce are refere n c ed to an d therefo r e ind e p ende nt of the vdac voltag e. page 1 4 of 41 9 /30/04
ir3080 cs i n - cs i n + cs i n - v drp is ha re p h as e i c ea o u t p h as e i c c u r r ent s ens e a m p l if ie r is ha re is ha re is ha re is ha re ... .. . iin vd a c vd a c fb vd ac 10 k + - rfb + - r drp + - ifb 10 k + - vo er r o r a m p lif i e r c u r r ent s ens e a m p l if ie r c o n t r o l ic v drp a m p l if ie r cs i n + figure 8. adaptive voltage positio ning inductor dcr temper atu r e corr ectio n if the thermal compe n satio n of the inductor dcr pro v ided by the tempe r ature d epen dent gai n of the curre n t sen s e amplifier is n o t ade quate, a ne gative te m perature co efficient (nt c ) the r mi stor c an b e u s e d fo r a dditional correctio n . the thermist or sh ould b e place d clo s e to the indu ctor a nd con necte d in pa rallel with th e feedba ck resi stor, a s sho w n in fig u re 9. the re sisto r in se rie s with the the r mist o r is u s e d to redu ce the nonlin ea rity of the thermistor. a simila r netwo rk mu st be pl ace d on the bbfb pin to ensure p r o p e r ope ration d u ring a tran sition to a lowe r vid code with body brakin g tm . ea o u t iiniin er r o r a m p lif ie r c ont r o l i c av p am p l i f i e r + - rfb if b rf b 2 vd a c rdrp + - rt vo fb v drp figure 9. temperature co mpen sation o f inductor dcr remote voltage sensing to re du ce th e effect of im peda nce in th e gro und pla ne, the vos n s- pi n is u s ed for remote sen s in g and con n e c ted dire ctly to the load. the v d ac voltag e is refe re nced to vosn s- to avoid ad ditio nal erro r term s o r delay rel a ted to a sep a rate diff erential am pl ifier. the ca pacito r con n e ct ing the v d ac and v o sns- pin s ensure that high sp eed transi ents a r e fed directly into t he error amplifier with out delay. page 1 5 of 41 9 /30/04
ir3080 vcc vid lin ear re gulato r and vid pow e r good the ir3080 i n tegrate s a fu lly protecte d 1.2v/150ma vccvid li ne ar regul ator with over-cu r re nt prote c tion. powe r for the vccvid regul ator i s d r awn from th e vidpwr pi n whi c h is typically conn e c ted to a 3.3 v supply. if the linea r regul ator out put voltage i s above 1.1v for a time p e ri od p r og ramm ed by a capa cito r between viddel and lg nd, the vidpgd pin will send out a vid powe r good si gnal and st art-up of the converter i s allowed. the pwrgd pin i s an ope n-colle ctor out put an d sho u ld be p u lled up to a voltage so urce throug h a resi stor. an external npn tran sisto r can b e u s ed t o enha nce th e cu rre nt ca p ability of the linear reg u lato r, as sho w n i n figure 10. the 5 oh m resi sto r pro v ides loo p co mpen sation a nd over-cur re nt prote c tion. 1. 8 v 0. 1u f ir3 080 con trol ic v i dde l 3 2 vi d f b 1 vc c v i d 2 vi d p w r 3 vi d 5 4 vi d 0 5 vi d 1 6 vi d 2 7 vi d 3 8 pw r g d 3 0 trm1 10 trm2 11 vo sn s - 12 trm3 13 trm4 14 vd ac 16 ss / d el 2 9 vi d p g d 3 1 ro s c 15 vi d 4 9 v rho t 2 8 h o t set 2 7 rm p o u t 2 6 lg n d 2 5 vc c 2 4 vbi a s 2 3 bbf b 2 2 eao u t 2 1 fb 2 0 v drp 1 9 ii n 1 8 o c set 1 7 2. 5- 3 . 3v v ccv id vo u t se n s e - 1u f 5 oh m figure 10. vcc vid line a r regulato r u s i ng external transi s tor soft sta r t, o v er-current fault dela y , and hicc up mode the ir3080 has a p r og ra mmable soft-start fun c tion to lim it the surge cu rre nt durin g the conve r ter sta r t-up. a cap a cito r co n necte d betwe en the ss/del and lg nd pins controls soft start as well as ove r -current prote c t i on delay and hiccup mode timi ng. a ch arge cu rre nt of 7 0ua and di sch a rge curre n t of 6ua cont rol the up slo pe and do wn slop e of the voltage at the ss/del pin resp ectively figure 1 1 de picts the va ri ous op eratin g mode s as co ntrolle d by th e ss/del fun c tion. if there is n o fault, th e ss/del cap a cito r pin will begin to be cha r g ed. the error a m plif ier outp u t is clamp ed l o w until ss/del re ache s 1.3v. th e error amplifie r will then re gulate the co nverter? s out put vo ltage to match the ss/del voltage less the 1 . 3v offset until it re ache s the level d e t ermine d by t he vid i nput s. t he ss/del voltage conti nue s to in cre a se until it rises above 3.91v and all o ws the pwrgd si gnal to be asse rted. ss/del finally settles at 4v , indicating the end of the soft start. und e r voltag e lock out, a vid=11 111 x, and vcc vid faults immediately set the fault latch cau s ing s s /del to begin to di scharg e . the s s /del ca pa ci tor will contin ue to di sch arge do wn to 0 . 2v. if the fau l t has clea red the fault latch will be reset by the di scharge com parat or allowi ng a normal soft start to occur. a delay is in cluded if a n over-cu r rent co ndition o c curs afte r a su ccessful soft start se que nce. this i s requi red si nce over-cu r rent con d ition s ca n o c cur as p a rt of normal operation du e to lo ad tran sient s o r vid tran sition s. if an over- current fault occurs during nor mal operation it will initiate the discharge of the capacitor at ss/del but will not set the fault latch immediately. if the ov er-current con d ition persi sts lo ng enou gh fo r the ss/del capa citor to discha rg e below the 90mv offset of the delay co mparator, the fault latch will be set pu lling the error amplifier? s output low inhibiting switchin g in th e pha se ics an d de -a ssertin g the p w rg d signal. the ss/del cap a citor will co ntinue to discha rge u n til it reache s 0.2v and the fault latch is reset allo win g a normal soft start to occur. if an over-cu r rent con d ition i s a gain encount ered du ring the soft sta r t cycl e the fa ult latch will b e set witho u t any delay an d hi ccu p mode will be gin. du ring hi ccup mo de th e cha r g e to di scharge curre n t ratio re sult s in a fixed 7. 9% hiccup m ode duty cycle reg a rdl e ss of at wha t point the over-cu r rent co ndition o c curs. ho weve r, the hiccu p fre quen cy is d e termin ed b y the load curre n t and over-current set val ue. page 1 6 of 41 9 /30/04
ir3080 the ove r -cu r rent d e lay can b e redu ced by addin g a re si sto r in serie s wit h the ss/de l capa citor. the d e lay comp arator? s offset voltage is re du ced b y the d r op in t he resi stor caused by the discha rge current. th e val ue of th e seri es re sist o r sho u ld be 1 0 k ? or less to avoid interf erenc e with the s o ft s t art func tion. if ss/del pin is pulled b e lo w 0.9v, the converte r ca n be disabled. v idp gd (v ou t ch an ge s du e to l o a d an d vi d ch an ge s) oc p de la y oc p th re sh ol d 1. 3v vc c no rm al op er at io n st ar t- up po we r- do wn re -s ta rt af te r oc p h i c c u p ov er -c ur re nt pr ot ec ti on 1. 1v v idp wr 8. 9v uv lo ( 12v ) ( 3.3 v) v ccv id ( 1.2 v) v idd el 3. 91v 3. 91 v s s/d el p wrg d v out i out (v cc vi d ga te s fa ul t mo de ) (v cc g a t e s fa ul t mo de ) figure 11. operatin g wav e form s under volta g e locko ut (uvlo ) the uv lo fu nction m onito rs the i r 30 8 0 ?s vcc sup p ly pin and e n su re s that ir30 80 ha s a high en oug h voltage to power the int e rnal circuit. the ir30 80? s uvlo is se t higher than the minimum operat ing voltage of co mpatible phase ics th us providing uvlo p r ote c tion for them as well. du ri ng power- up the fault latch is re set wh en vcc excee d s 9.1 v and the r e is no other f ault. if the vcc volt a ge drop s b e lo w 8.9v the faul t latch will b e set. fo r conve r ters u s ing a sep a rate 5v supply f o r g a te d r iver bias an external uvlo ci rcuit ca n be adde d to p r e v ent any operation unti l adequ ate voltage is p r e s e n t. a diode co nne ct ed bet ween the 5v supply and the ss/del pin provide s a sim p le 5v uvlo fu nctio n . uvlo of the vidp wr i nput is p r ovided by th e v i d power go od fun c tion. adequa t e voltage must be pre s e n t at vidpwr pi n to allow vccvid to reach 1.1v. ov er current prote c tion (o cp) the current li mit threshold is set by a re sisto r conn ec ted betwe en t he ocset a nd vdac pin s . if the iin pin voltage, whi c h is p r o portion al to the avera ge curre n t plus da c voltage, exceed s the ocset voltage, the ove r -curre nt prote c tion is t r igge re d. page 1 7 of 41 9 /30/04
ir3080 vid = 1111 1 x fault vid cod e s of 1111 11 an d 1111 10 will set the fault latch an d di s abl e the error a m plifier. an 8 00n s delay is provide d to prevent a fault con d ition from oc cu rrin g durin g dyn a mic vid cha nge s. po w e r goo d outpu t the pwrg d pin is a n ope n-colle ctor o u t put and shou ld be pull ed u p to a voltage sou r ce thro u gh a resi stor. duri ng soft start, the pwrgd remain s low until the output vo ltage is in re gulatio n and ss/del is above 3.91v. th e pwrgd pi n become s lo w if the fault latch is set. a high leve l at t he pwrg d pin indi cate s that the conv erter i s in operation an d has n o fault, but does not ensu r e the output voltage is within the sp eci f ication. outp ut voltag e regul ation wit h in the de sig n limits can lo gically be a ssur ed h o wever, assu ming n o comp one nt failure in the system. load cu rren t indicator o u tpu t the vdrp pi n voltage rep r esents t he a v er age cu rre n t of the co n v erter pl us th e dac volta g e . the loa d current can be retri e ved b y a differential amplifier whi c h subt ra ct s the vdac volt age from the vdrp voltag e. sy stem refe rence voltag e (vbias ) the ir3 081 sup p lie s a 6.8v/5ma pre c i s ion referen c e volt age fro m the vbias pin. the oscillator ram p a m plitude tracks the vbias voltage, whi c h should be used to progra m the p hase ic tri p po ints to minimi ze ph ase del ay erro rs. thermal mo nitoring (v rhot ) the ir3 080 senses it s o w n die temp erature a nd p r o duces a volta ge at the in p u t of the vrhot com p a r ator that i s prop ortio nal to temperatu r e. an external resi stor di vi der conn ecte d from vbias to the hotset pin and ground can be u s e d to p r ogra m the th ermal trip poi nt of the v r ho t co mpa r ator. th e vrhot pin i s a n op en-coll ector outp u t and sh ould b e pulle d u p t o a voltag e source th ro ug h a re sisto r . if the therm a l trip p o int i s rea c he d the vrhot output drive s low. pulling hotset abov e approximat ely 7.5v will disabl e the oscillator (u se d d u ring fa ctory testing ) . page 1 8 of 41 9 /30/04
ir3080 application informations d bst rcs + c bst rp wm rm p cp wmrmp vgat e ro s c rv cc cv cc cv ccl rb b drp 20k rb ia s i n r p h ase62 rcs - r p h ase21 vi d d el 32 vi d f b 1 v ccv id 2 vi d p w r 3 vi d 5 4 vi d 0 5 vi d 1 6 vi d 2 7 vi d 3 8 pw r g d 30 trm1 10 trm2 11 vosn s- 12 trm3 13 trm4 14 vd ac 16 ss/ d e l 29 vi d p gd 31 ro s c 15 vi d 4 9 v rho t 28 ho ts e t 27 rmp o ut 26 lgn d 25 vc c 24 vbi as 23 bbf b 22 eaou t 21 fb 20 v drp 19 iin 18 oc set 17 ir3080 control ic r p h ase11 r p h ase33 20k rb ia s i n 1nf r p h ase42 cfb l rv cc rcs - d bst 20k rb ia s i n rcs + ccs + c bst ci n r p h ase43 r p h ase3 1 cv cc rcs - d bst ci n cdrp 0. 1uf cv cc rcs + cv ccl rcs + r p h ase12 ci n ci n cc p da cin 19 bi asi n 20 rm p i n+ 1 rm p i n- 2 gat e h 14 v cch 15 cs in- 17 ph sf lt 18 h o t set 3 v rho t 4 sc om p 6 eai n 7 pgn d 13 gat e l 12 lgn d 9 p w mrmp 8 is ha re 5 vc c 10 v ccl 11 cs in+ 16 i r3086 p hase ic cs co m p cs co m p ccs - rcs - r ss/ d e l cs co m p r p h ase41 da cin 19 bi asi n 20 rm p i n+ 1 rm p i n- 2 gat e h 14 v cch 15 cs in- 17 ph sf lt 18 h o t set 3 v rho t 4 sc om p 6 eai n 7 pgn d 13 gat e l 12 lgn d 9 p w mrmp 8 is ha re 5 vc c 10 v ccl 11 cs in+ 16 i r3086 p hase ic r bbf b rdrp l da cin 19 bi asi n 20 rm p i n+ 1 rm p i n- 2 gat e h 14 v cch 15 cs in- 17 ph sf lt 18 h o t set 3 v rho t 4 sc om p 6 eai n 7 pgn d 13 gat e l 12 lgn d 9 p w mrmp 8 is ha re 5 vc c 10 v ccl 11 cs in+ 16 i r3086 p hase ic rp ha s e 6 3 ccs - ci n 10 ohm rv cc ccs - ci n da cin 19 bi asi n 20 rm p i n+ 1 rm p i n- 2 gat e h 14 v cch 15 cs in- 17 ph sf lt 18 h o t set 3 v rho t 4 sc om p 6 eai n 7 pgn d 13 gat e l 12 lgn d 9 p w mrmp 8 is ha re 5 vc c 10 v ccl 11 cs in+ 16 i r3086 p hase ic cs co m p rs ha re rcs - rcp d bst rp wm rm p rv cc cv cc cp wmr m p c bst cv ccl ccs - rp wm rm p cp wmrm p ro cs e t r p h ase52 da cin 19 bi asi n 20 rm p i n+ 1 rm p i n- 2 gat e h 14 v cch 15 cs in- 17 ph sf lt 18 h o t set 3 v rho t 4 sc om p 6 eai n 7 pgn d 13 gat e l 12 lgn d 9 pw m r m p 8 is ha re 5 vc c 10 v ccl 11 cs in+ 16 i r3086 p hase ic rcs - rfb l c ss/ d e l cs co m p ccs + r p h ase22 cv da c 20k rb ia s i n ccs - r p h ase61 ccp 1 l ccs + r p h ase1 3 r p h ase53 ccs + l r p h ase23 da c i n 19 b i asi n 20 rm p i n+ 1 rm p i n- 2 gat e h 14 v cch 15 cs in- 17 ph s f l t 18 h o t set 3 v rho t 4 sc o m p 6 ea i n 7 pgn d 13 gat e l 12 lg n d 9 p w mrmp 8 is ha re 5 vc c 10 v ccl 11 cs in+ 16 i r3086 p hase ic rfb 1 20k rb ia s i n r p h ase32 ccs - cv idde l rv da c 0. 1 u f d bst rcs + l r p h ase51 20k rb ia s i n c bst ccs + ccs + cs co m p r drp 1 po w e r g o o d vo u t + vi d p g d v rho t vo u t sen se- vo u t sen se+ vi d 5 vo u t - vi d 3 vi d 4 vi d 0 vi d 2 vi d 1 12v rp wm rm p cp w m rmp distribution impedance cout rv cc cv cc cv ccl rp wm rm p cp wmrmp 1uf 3. 3v 0. 1u f rv cc cv cc cv ccl v ccv id rv cc cv cc cv ccl c bst rho t s e t c1 rho ts e t c2 rp wm rm p cp wmrmp d bst 3 rcs + c bst 2 rg a t e qgat e dg a t e figure 12. ir3080/ir308 6 six phase vrd 1 0 co nve r ter page 1 9 of 41 9 /30/04
ir3080 design procedures - ir3080 and ir3 086 chipset ir3080 external comp onents oscillator resistor ros c the oscillato r of ir308 0 g enerates a tri angle wavefo rm to syn c h r onize the p h a s e i c s, an d t he swit chin g freque ncy of the ea ch p hase conve r ter e qual s the oscillato r fr e quen cy, whi c h is set by th e extern al resistor r os c according t o the curve in f i gure 1 3 . vid delay c a pacit o r c vi ddel after the vid voltage of the integrate d lin ear regul ator is above 1.1v , there is a time delay bef ore the soft st art of the conve r ter i s initiated. the vid delay time t vid can be pro g ramm ed by an external cap a cit o r bet ween v i ddel pin and lg nd, and the ca pa ci tance i s determined by (1 ). 91 . 3 10 * 66 6 vid viddel t c  (1) soft sta r t c a pacitor c ss/ del and resistor r ss/del b e cau s e t h e cap a cit o r c ss / d e l prog ra ms fou r different time pa ra meters, i.e. soft s t art delay time, s o ft s t art time, over-cu r rent l a tch d e lay ti me, and po wer g ood dela y time, they sho u ld b e co nsid ere d tog e ther whil e choo sing c ss/del . the ss/del pin voltage control s the sl ew rate of th e conv erte r o u tput voltage, as sho w n in figu re 11. a fter the viddel pin v o ltage ri se s a bove 3.91v, there i s a soft-sta r t delay time t ssdel, after whi c h the error am plifie r output is released to allow the so f t s t art. the soft s t art time t ss re present s the time du ring whi c h co nverter volta ge rises from z e ro to v o. t ss can be prog ram m e d by an external ca pa cito r, which is dete r mine d by equation (2 ). o ss o ss chg del ss v t v t i c * 10 * 70 * 6 /  (2) once c ss/de l is cho s en, the soft start delay time t ssdel, the over-cu r rent fau l t latch delay time t ocdel , and the delay time t v ccpg from out put voltage (v o ) in re gula t ion to po we r goo d a r e fix ed a nd sh own in eq uation s (3), (4 ) and (5 ) re sp e c tively. 6 / / 10 * 70 3 . 1 * 3 . 1 *  del ss chg del ss ssdel c i c t (3) 6 / / 10 * 6 09 . 0 * 09 . 0 *  del ss dischg del ss ocdel c i c t (4) 6 / / 10 * 70 ) 3 . 1 91 . 3 ( * ) 3 . 1 91 . 3 ( *      o del ss chg o del ss vccpg v c i v c t (5) if faster ove r -curre nt prot e c tion i s requi red, a re si stor in se rie s with the soft sta r t ca pa citor c ss/del can b e used to redu ce th e o v er-curre nt fault latch d e l a y time t o cdel , and the resi stor r ss/del is dete r mi ned by equa tion (6). equation (2) for soft sta r t cap a cito r c ss / d e l and eq uation (5) for powe r go od delay time t vccpg are un cha nge d, while the equ ation fo r soft start delay ti me t ss/del (equation 3) i s cha nge d to equatio n (7). con s id erin g the wo rst ca se value s o f charg e and discha rge cu rrent, r ss/del sho u ld not be greate r than 10 k  . 6 / 6 / / 10 * 6 10 * 6 09 . 0 * 09 . 0      del ss ocdel dischg del ss dischg ocdel del ss c t i c i t r (6 ) page 2 0 of 41 9 /30/04
ir3080 6 6 / / / / 10 * 70 ) 10 * 70 3 . 1 ( * ) * 3 . 1 ( *     del ss del ss chg chg del ss del ss ssdel r c i i r c t ( 7) vdac sle w rate progra mming capa citor c vdac and re sisto r r vdac the sl ew rat e of vdac d o wn -sl ope s r down can be programm ed by t he external ca pa citor c vdac a s defined in equation (8), whe r e i sink is the sin k current of vdac pin a s sh own in fi gure 15. the re sisto r r vdac is used to comp en sate vdac ci rcuit and is d e term ined by e quat ion (9 ). the sl ew rate of vdac up-slo pe sr up is pro p o rtional to that of vdac do wn-slo pe and i s giv en by equati on (1 0), where i sour ce is the sou r ce current of vdac pin a s s h ow n in f i gu r e 15 . down sink vdac sr i c (8) 2 15 10 2 . 3 5 . 0 vdac vdac c r   (9) vdac source up c i sr (10) ov er current setting res i stor r o c set the inductor dc resi stance is utilized t o sense the i nductor current. the copper wi re of inductor has a constant temperature coeffici ent of 3850 p p m/ c , and therefo r e the maximu m indu ctor d cr can b e ca lculate d from equation ( 1 1) , w h er e r l_max and r l_room are the inductor dcr at maximum temperature t l_max and room te mperature t_ room res p ec tively. )] ( 10 * 3850 1 [ _ 6 _ _ room max l room l max l t t r r    (11) the cu rre nt sen s e amplifi e r g a in of i r 30 86 d e cre a se s with te mperature at the rate of 1470 ppm/ c, which comp en sate s part of the inducto r dcr i n crea se. the phase ic di e temperatu r e is only a cou p le of degre e s cel s iu s highe r than th e pcb tempe r ature due to the low therm a l impeda nce of mlpq packag e . the mi nimum curren t sense amplifier g a in at the maximum pha se ic temperature t ic_max is ca lculate d from equation (12). )] ( 10 * 1470 1 [ _ 6 _ _ room max ic room cs min cs t t g g    (12) the total in p u t offset voltage (v cs_tofst ) of curre n t sen s e am plifier in pha se ics i s th e su m of in put offset (v cs_ofs t) o f the amplifier itself and th at cr eate d by the amplifier input bias currents flo w in g throug h the current sen s e r e si st o r s r cs+ and r cs- .       cs csin cs csin ofst cs tofst cs r i r i v v _ _ (13) the over cu rrent limit is se t by the external re si stor r o c set as defined in equ a tion (1 4), wh ere i limit is the requi re d over current l i mit. i o c set, the bia s curre n t of ocset pin, cha nge s with switchi n g frequ en cy setting resi st or r os c and is d e termined by the curve in fi g u re 1 4 . k p is the ratio of indu ctor p eak cu rrent ove r averag e cu rrent in eac h pha se an d is cal c ulate d fro m equation (15). ocset min cs tofst cs p max l limit ocset i g v k r n i r / ] ) 1 ( [ _ _ _   (14) n i f v l v v v k o sw i o o i p / ) 2 /( ) (  (15) page 2 1 of 41 9 /30/04
ir3080 no load output voltag e setting resi stor r fb and adap tiv e voltage positio n ing resis t o r r drp a resi stor bet wee n fb pin and the conv erter out put i s u s ed to cre a te output vol t age offset v o_nl ofs t , which i s the differen c e b e t ween v dac voltage an d output voltag e at no lo ad con d it ion. a daptive volta ge po sitioni n g further lowe rs the co nverter voltag e by r o *i o, w here r o is the r e qu ir ed out put impeda nce of the conv erter. r fb is not on ly determine d by i fb , the current flowin g out of fb pin as sho w n in figure 14, bu t also affecte d by the adaptive volt age positio ni ng resi sto r r drp and total input off s et voltage of c u rr e n t s e ns e amp lifie rs . r fb and r drp are dete r min ed by (16 ) an d (17 ) re spe c tively, max l fb o tofst cs nlofst o max l fb r i r n v v r r _ _ _ _  (16) o min cs max l fb drp r n g r r r _ _ (17) con t rol ic o v er tempera t ure se tting resis t ors r hotset c1 and r ho tsetc2 the threshol d voltage of vrho t com parato r is pro portion al to th e die temp erature t j (o c) of control ic i r 30 80, as sho w n i n equ a tion (18). determin e the relation shi p b e tw ee n the di e tempe r atu r e of ir30 80 and the te mp eratu r e of the po we r co nverter a c cording to th e p o we r lo ss, pcb layout an d airflo w, et c. then calcula t e the vrho t thre sh ol d voltage co rre s po ndin g to the tempe r atu r e. 241 . 1 * 10 * 73 . 4 3   j vrhot t v (18) use vbias as the refe re nce volta ge. if r hotse t c1 is pre sele cted, r hotset c2 can be calcul ated a c cordin g to equation (19). vrhot vbias vrhot hotsetc hotsetc v v v r r  1 2 (19) body braking tm rela ted resis t ors r bbfb and r bb drp the bo dy brakin g tm durin g dynami c vid can b e di sabl ed by co nne cting bbfb pin to ground. if the feature i s enabl ed, re sistors r bbfb and r bbdrp are nee ded to resto r e t he feed ba ck voltage of the erro r am plifier afte r dynami c vid step do wn. usually r bbfb and r bbdrp are cho s en to match r fb a nd r drp res p ec tively . ir3086 external comp onents pwm ram p resis t or r pw mr mp and capa citor c p w mr mp pwm ram p is generated b y conne cting the resi stor r pwmrmp betwee n a volta ge sou r ce an d pwmrmp pin as well as th e cap a ci tor c pwmrmp between pwm r mp a n d lg nd. ch o o se the de sired p w m ram p mag n itude v pwmrmp and th e cap a citor c pwm r mp in the range of 1 0 0 p f an d 4 70p f, and t hen cal c ulate the re sisto r r p w mrmp from equation (20 ) . to achieve feed-fo rward voltage mod e control, the resi stor r ramp sho u ld be conne cted to t he input of the convert e r. )] ln( ) [ln( * * * pwmrmp dac in dac in pwmrmp sw in o pwmrmp v v v v v c f v v r     (20) inductor cur r ent sen s ing capaci tor c cs+ and resi stors r cs+ a nd r cs- the dc re sistance of the i ndu ctor i s util ized to se nse the indu cto r curre n t. usua lly the re sisto r r cs+ and capa citor c cs+ in pa ral l el with the in ducto r are ch ose n to match the time co nstant of the indu ct or, and therefore the voltage across the ca pacito r c cs+ rep r e s ent s the indu ctor current. if the two time con s ta nts are not the same, the ac comp one nt o f the capa cito r voltage i s d i fferent from t hat of the re al indu ctor cu rre nt. the tim e co nsta nt mismat ch doe s not affect the averag e curre n t sha r ing am ong th e multiple ph ase s , but affect the cu rre nt sign al ishare as well as the outp u t voltage duri n g the load current tran sie n t if adaptive voltage po sitioni ng is ad opted . page 2 2 of 41 9 /30/04
ir3080 measure the indu ctan ce l and the indu ctor dc re sist ance r l . pre-sele ct the ca pacito r c cs+ and calculate r cs+ as follows .   cs l cs c r l r (21) the bia s current flowing o u t of the non -inverting in pu t of the curre n t sen s e a m p lifier create s a voltage d r o p acro ss r cs+, which i s eq uivalent t o an in put offset voltage of the cu rr ent sense amplifie r. the off s et affects the accuracy of conve r ter cu rrent si gnal i s hare a s well a s the accura cy of the co nverte r output voltage if adaptiv e voltage positio ning i s adopte d . to redu ce t he offset voltage, a re sisto r r cs- sh ould be ad ded b e twe en the amplifie r i n verting input and the conve r ter o u tput . the res i stor r cs- is de termine d by the ratio of the bias curre n t from the non -invertin g input and the bias curre n t from the inverti ng input.     cs csin csin cs r i i r (22) if r cs- is not use d , r cs+ should be cho s en so that th e offset volta ge i s small e noug h. usu a l l y r cs+ sho u l d be le ss than 2 k  an d therefo r e a large r c cs+ v a lue is n eed e d . ov er temperatur e settin g resis t ors r ho tset1 and r ho tset2 the th re shol d voltage of vrho t com parato r i s pro portion al to t he di e temp e r ature t j (o c) of ph ase ic. dete rmin e the relatio n sh ip between th e die tem perature of pha se ic an d the temperature of the po we r conve r ter accordin g to the po wer l o ss, p c b layo ut and ai rflo w etc, a nd th en ca lculate hotset th resh old voltag e co rrespon d i ng to the allowed maxi mum tempe r ature fro m equation (2 3). 241 . 1 * 10 * 73 . 4 3   j hotset t v (23) there a r e t w o ways to set the ove r tem peratu r e thre shol d, central setting and l o cal setting. in the cent ral setting, only one re si stor divide r is use d , and the setting vo ltage is co nn ected to ho tset pins of all the phase ics. to redu ce the inf l uen ce of noi se on the a c cura cy of over te mperatu r e setting, a 0.1 u f cap a cito r sho u ld be pla c ed n e xt to hotset p i n of ea ch ph ase i c . in the local setting, a re sisto r div i der p e r pha se is n eede d, and the settin g voltage is con n e c ted to ho tset pin of ea ch p hase. the 0. 1uf d e coupli ng cap a cito r i s n o t ne ce ssary. use vbias as th e referen c e voltage. if r hots et1 is pre-sel e cted, r ho tset2 can be ca lculate d as fol l ows. hotset bias hotset hotset hotset v v v r r  1 2 (24) phase dela y timing resistors r phase1 and r phase2 the ph ase d e lay of the i n terleave d m u ltipha se con v erte r i s pro g ramm ed by the re sisto r divider con necte d at rmpin+ o r rmpin- dep endin g on wh ich slop e of the o scill ator ramp is u s ed for the p h a s e delay p r og ra mming of pha se ic, as sho w n in fig u re 3. if the up slop e is u s ed, rmpin+ pin of the p h a s e i c sho u ld be con n e c ted to rmpo ut pi n of the cont rol ic an d rmpin- pin sho u ld b e co nne cted to t he resi stor d i vi der. when rmpo ut v o ltage i s ab o v e the trip v o ltage at rmpin- pin, the pwm latch is set. gat e l beco m e s lo w, and gat e h become s high after the non-overl ap time. if d o w n s l o p e is us ed , rmpin - p i n o f th e p h a s e ic s h ou ld b e c o nn ec te d to r m pou t p i n o f the c o n t r o l ic and rmpin+ pi n sho u ld be co nne cted to t he re sisto r d i vider. whe n rmp o ut v o ltage i s bel ow th e tri p v o ltage at rmpin- pin, the pwm latch is set. gat e l beco m e s lo w, and gat e h become s high after the non-overl ap time. use vbias voltage a s the refere nce for t he re sisto r divider sin c e the oscillato r ramp m agn itude from co ntrol ic tracks vbias voltage. try to avoid both edge s of the oscilla tor ra mp for bette r noise immuni ty. determine the rati o of the progra mming resi st ors correspon di ng to the de sire d switchin g frequ en cie s and p h a s e n u mbe r s. if the re sisto r r phasex 1 is pre- sel e ct e d , t he re sist o r r phasex 2 is determine d as: phasex phasex phasex phasex ra r ra r  1 1 2 (25) page 2 3 of 41 9 /30/04
ir3080 combined o v er tempera t ure an d pha se delay setting re sistor s r phase1 , r phase2 and r phase3 the over te mperature se tting re si stor divider can b e combi ned with the p h a s e delay re si stor divide r t o save one resi sto r per p hase. cal c ulate th e hotset th reshold volta ge v ho tset co rre sp ondi ng to the all o we d maxim u m tempe r at ure from equation (2 3). if the o v er temperature setting volt age is lowe r than the pha se d e lay setting voltage, vbias*ra phasex , conne ct rmpin+ or rmpin- pin betwe en r p h asex 1 and r phasex 2, an d conn ect hotset pin betwe en r phasex 2 and r p h asex 3 . pre-selec t r phase x 1 , ) 1 ( * ) ( 1 2 phasex bias phasex hotset bias phasex phasex ra v r v v ra r   (26) ) 1 ( * 1 3 phasex bias phasex hotset phasex ra v r v r  (27) if the over te mperature se tting voltage i s hi ghe r tha n the ph ase d e lay setting voltage, vbias*ra phasex , co nne ct hotset pin betwe en r ph asex 1 and r p h asex 2 and conne ct rmpi n+ o r rmpin- between r p h asex 2 and r phasex3 respec tively. pre-s e lec t r p h asex 1 , hotset bias phasex bias phasex hotset phasex v v r v ra v r   1 2 ) ( (28) hotset bias phasex bias phasex phasex v v r v ra r  1 3 * (29) boo t str a p capacitor c bst dep endin g o n the duty cy cle an d gate drive current of the pha se ic, a 0.1uf t o 1uf cap a ci tor is n eed ed for the bootstrap ci rcuit. deco upling capa citor s for phase ic 0.1uf-1uf de cou p ling cap a citors a r e re quire d at vcc and vccl pins of ph ase ics. voltage loop comp ensation the adaptive voltage posi tioning (avp) is usually adopted in the computer applications to i m prove the transient respon se and redu ce th e p o we r lo ss at heavy load. l i ke cu rre n t mode control, the ad aptive voltage p o sitio n ing loo p introdu ce s extra zero to th e voltage l o o p and splits t he do uble po les of th e p o w er sta ge, which ma ke th e voltage loop compe n s ation mu ch easi e r. re sist o r s r fb and r drp a r e cho s e n a c cording to eq uation s (16 ) and (17 ) , a n d the sele ction of comp en sa tion types depe nd s on the output ca pacito r s u s e d in the converter. fo r the applicatio ns using elect r olytic, polymer or al- polymer ca p a citors an d runnin g at lower freq uen cy, type ii comp ensation sho w n in figu re 17(a ) is u s ual ly enough. while for the appli c ations using only cerami c capacit o rs and runni ng at hi gher frequency, ty pe iii compensation sho w n in fig u re 17 (b ) is p r eferred. for a ppli c atio ns whe r e av p is not requi red, the com pen sati on i s t he same a s f o r the reg u lar voltage mod e co ntrol. for co nverte r usi n g polymer, al -polym er, a nd ce ra mic ca pa citors, which hav e mu ch hig h e r es r ze ro freque ncy, type iii comp ensation is re quire d as sho w n in figu re 17(b ) with r drp and c drp remov e d. t y pe ii compensa tion fo r avp applic ations determine th e com pen sati on at no loa d , the wo rst ca se condi tio n . cho o se the crossove r fre q uen cy fc bet wee n 1/10 and 1/5 of th e swit chin g freque ncy pe r pha se. assu me the time con s tant of the re si stor a nd ca pa citor across the output in du ctors mat c he s t hat of the ind u ctor, and de termine r cp and c cp fro m equatio ns (30 ) a nd (31 ) , whe r e l e and c e are t he e quivalen t indu ctan ce of output i n d u ctors and t he e quivalen t cap a cita nce of outp u t ca pacito r s r e spec tively. page 2 4 of 41 9 /30/04
ir3080 rc p cc p 1 eaou t cc p rf b rd rp vo+ v drp vd ac + - eaou t fbfb cfb cdrp rcp eao u t ccp 1 cc p rfb rd rp vo+ v drp vd ac fb + - eaou t rfb 1 (a) t y pe ii com pens atio n (b) t y pe iii compens ation figure 17. voltage loo p compen satio n netwo rk 2 2 ) * * * 2 ( 1 * ) 2 ( c c o pwmrmp fb e e c cp r c f v v r c l f r s s  (30) cp e e cp r c l c 10 (31) c cp1 is optio nal and may be nee ded in some a ppli c a t ions to red u ce the jitter ca use d by the high frequ en cy noise. a cerami c ca pa citor bet wee n 10pf and 2 2 0pf is u s ually enoug h. t y pe iii com p ensation for avp applications determine th e com pen sati on at no lo a d , the wo rst ca se con d ition. assu me th e time co ns t ant of the re sisto r an d cap a cito r a c ross the outpu t inducto rs m a tche s th at of the ind u cto r , the cro s sover frequ en cy an d pha se ma rg in of th e voltage loop can b e estim a ted by equa tions (3 2) a n d (33), where r le is the eq uivalent re sist ance of indu ctor dcr. le fb cs e drp c r r g c r f * * 2 1 s (32) s t 180 ) 5 . 0 tan( 90 1  a c (33) cho o se the d e sired cro s so ver frequ en cy fc aro und fc1 es timate d b y equation (3 2) o r ch oo se fc between 1/ 10 an d 1/5 of the swi t ching freq ue ncy p e r pha se, and sele ct the comp o n e n ts to en sure the sl ope of close loop gai n is -2 0db /dec aro und the crossove r freque ncy. cho o se re si stor r fb1 a c cordin g to eq uation (34 ) , and d e termi n e c fb an d r drp from equation s (3 5) and (3 6). fb fb r r 2 1 1 to fb fb r r 3 2 1 (34) 1 4 1 fb c fb r f c s (35) drp fb fb fb drp r c r r c  ) ( 1 (36) r cp an d c cp have limite d effect on the cro s sove r fre quen cy, and are used only to fine tun e t he cro s sove r freque ncy and tran sie n t load re sp on se. determi ne r cp and c cp from equatio ns (3 7) a nd (38). page 2 5 of 41 9 /30/04
ir3080 o pwmrmp fb e e c cp v v r c l f r 2 ) 2 ( s (37) cp e e cp r c l c 10 (38) c cp1 is optio nal and may be nee ded in some a ppli c a t ions to red u ce the jitter ca use d by the high frequ en cy noise. a cerami c ca pa citor bet wee n 10pf and 2 2 0pf is u s ually enoug h. t y pe iii com p ensation for non-avp applications re sist o r r fb is cho s en a c cordin g to eq u a tions (1 6), a nd resi stor r drp and capa citor c drp a r e not n eed ed. cho o se the cro s sover frequ en cy fc betwe en 1/1 0 and 1/5 of th e sw itching f r eque ncy p e r pha se and se lect the de sired p h a s e margi n  c. calcul ate k factor from equa tion (39 ) , and determi n e the com pone nt values b a sed on equation s (4 0) t o (44 ) , )] 5 . 1 180 ( 4 tan[  c k t s (39) k v v f c l r r o pwmrmp c e e fb cp 2 ) 2 ( s (40) cp c cp r f k c s 2 (41) cp c cp r k f c s 2 1 1 (42) fb c fb r f k c s 2 (43) fb c fb c k f r s 2 1 1 (44) current s h are loop compens a tion the crossove r fre que ncy of the cu rrent s hare loo p sh o u ld b e at lea s t one de cad e lowe r th an th at of the volta ge lo op in orde r to eli m inate the in teractio n b e twee n the two loop s. a ca p a citor fro m s c omp to g r o und i s usuall y enou gh for the sha r e loop com p ensation. ch oose the cro s sover freq u ency of current sha r e lo op (f ci ) based on the cro s sove r fre quen cy of voltage loop (f c), and dete r min e the c sco m p , 6 _ 10 * 05 . 1 * 2 * )] ( * * * 2 1 [ * * * * * * 65 . 0 ci o mi o o e ci le room cs o i pwmrmp scomp f v f i v c f r g i v r c  s s (45) whe r e f mi is the pwm gai n in the curre n t share loop , ) ( * ) ( * * * dac i dac pwmrmp i pwmrmp sw pwmrmp pwmrmp mi v v v v v v f c r f    ( 46) page 2 6 of 41 9 /30/04
ir3080 design e x ample 1 - vrd 10 conve r t e r specifications input voltage : v i =12 v dac voltag e: v dac =1.35 v no lo ad out put voltage o ffset: v o_nlof st =20 mv output current: i o =105 a dc maximum output current: i oma x =120 a dc output imped ance: r o =0. 9 1 m  vcc ready to vcc po wer good delay: t vccpg =0- 1 0 m s vid delay ti me: t vid =2. 5 ms soft start tim e : t ss =2ms over current delay: t ocde l =0. 5 ms dynami c vid do wn-sl ope slew rate: s r down = 2 .5mv/us over tem perature th re sh old: t pcb =11 5 oc power stage phase num b er: n=6 switchin g fre quen cy: f sw =400 khz output indu ctors: l = 22 0 n h , r l =0.47 m  output ca pa citors: al-pol ymer, c=560 uf, r c = 7m  , numbe r cn =10 ir3080 external comp onents oscillator resistor ros c once the switching frequ ency i s cho s en, r os c ca n be d e termi ned fro m the cu rve in fig u re 1 3 . fo r swit chin g freque ncy of 400 khz pe r p hase, cho o se r os c =30.1k  vid delay c a pacit o r c vi ddel given vid de lay time t vid =2. 5 ms , the ca pacito r ca n is, nf t c vid viddel 42 91 . 3 10 * 5 . 2 10 * 66 91 . 3 * 10 * 66 3 6 6    , choo se 47 n f soft sta r t c a pacitor c ss/ del and resistor r ss/del bec a us e fast er ove r -cu r re nt prote c tion is requi re d, the soft sta r t ca pa citor c ss/del in series with the res i s t or r ss/del is used. cal c ulate the soft start cap a cito r fro m the requi re d soft start time. uf v t i c o ss chg del ss 1 . 0 10 * 20 35 . 1 10 * 2 10 * 70 3 3 6 /     cal c ulate the soft start re si stor fro m the requi re d over current del ay time t ocdel , :       k i c i t r dischg del ss dischg ocdel del ss 10 10 * 6 10 * 1 . 0 10 * 6 10 * 5 . 0 09 . 0 09 . 0 6 6 6 3 / / the s o ft s t art delay time is ms i i r c t chg chg del ss del ss ssdel 86 . 0 10 * 70 ) 10 * 70 * 10 * 10 3 . 1 ( 10 * 1 . 0 ) 3 . 1 ( 6 6 3 6 / /      page 2 7 of 41 9 /30/04
ir3080 the po we r go od delay time is ms i v c t chg o del ss vccpg 8 . 1 10 * 70 ) 3 . 1 33 . 1 91 . 3 ( * 10 * 1 . 0 ) 3 . 1 91 . 3 ( * 6 6 /       vdac sle w rate progra mming capa citor c vdac and re sisto r r vdac from fig u re 15, the sin k curre n t of vdac pin corresp ondi ng to 400khz (r os c =30.1 k  ) i s 76ua. cal c ulate the vdac do wn -slop e sle w -ra t e prog rammi ng ca pa citor from the requi red do wn -slo pe sle w rate. nf sr i c down sink vdac 4 . 30 10 / 10 * 5 . 2 10 * 76 6 3 6    , choo se c vd ac =33n f cal c ulate the prog ram m ing resi stor. :      5 . 3 ) 10 * 33 ( 10 * 2 . 3 5 . 0 10 * 2 . 3 5 . 0 2 9 15 2 15 vdac vdac c r from fig u re 15, the sou r ce curre n t of vdac pin i s 11 0ua. the vdac up-slo pe sle w rate is us mv c i sr vdac source up / 3 . 3 10 * 33 10 * 110 9 6   ov er current setting res i stor r o c set the room te mperature is 25oc an d the target p c b t e mpe r at ure i s 1 00 o c . th e pha se ic di e tempe r atu r e is abo ut 1 oc high er tha n that of phase ic, and the indu ct or temp eratu r e is clo s e to pcb temperature. cal c ulate ind u ctor dc re si stan ce at 100 oc, :        m t t r r room max l room l max l 61 . 0 )] 25 100 ( 10 * 3850 1 [ 10 * 47 . 0 )] ( 10 * 3850 1 [ 6 3 _ 6 _ _ the cu rrent sense amplifie r gain is 3 4 at 25oc, and its gain at 101o c is calculate d as, 2 . 30 )] 25 101 ( 10 * 1470 1 [ 34 )] ( 10 * 1470 1 [ 6 _ 6 _ _       room max ic room cs min cs t t g g set the over current limit at 135a. from fi gu re 1 4 , the bias curre n t of ocset pin (i o c set ) is 41ua with r os c =30.1 k  . the total current sen s e amplifier inp u t offset volt ag e is 0.55 mv, whi c h i n cl ude s the offset created by the curre n t se nse am plifier input re sisto r mismat ch. cal c ulate con s tant k p, the ratio of induct o r pea k curre n t ov er avera ge cu rrent in each pha se, 3 . 0 6 / 135 ) 2 10 * 400 12 10 * 220 /( 33 . 1 ) 33 . 1 12 ( / ) 2 /( ) ( 3 9    n i f v l v v v k limit sw i o o i p ocset min cs tofst cs p max l limit ocset i g v k r n i r / ] ) 1 ( [ _ _ _   :     k 3 . 13 ) 10 * 41 /( 2 . 30 ) 10 * 55 . 0 3 . 1 10 * 61 . 0 6 135 ( 6 3 3 no load output voltag e setting resi stor r fb and adap tiv e voltage positio n ing resis t o r r drp from fig u re 14, the bias current of fb pin is 41ua wit h r os c =30.1 k  . :         365 10 * 61 . 0 10 * 41 10 * 91 . 0 6 10 * 55 . 0 10 * 20 10 * 61 . 0 3 6 3 3 3 3 _ _ _ _ max l fb o tofst cs nlofst o max l fb r i r n v v r r page 2 8 of 41 9 /30/04
ir3080 :   k r n g r r r o min cs max l fb drp 21 . 1 10 * 91 . 0 6 2 . 30 10 * 61 . 0 365 3 3 _ _ con t rol ic o v er tempera t ure se tting resis t ors r hotset c1 and r ho tsetc2 set the temperatu r e thre shold at 115 o c , whi c h corresp ond s to the ic die temperature of 116 oc. cal c ulate the hotset thre shol d voltage corre s po ndin g to the temperatu r e thre shold s . v t v j hotset 79 . 1 241 . 1 116 10 * 73 . 4 241 . 1 * 10 * 73 . 4 3 3     , choo se r h o tsetc1 =20.0k  , :   k v v v r r hotset bias hotset hotsetc hotsetc 15 . 7 79 . 1 8 . 6 79 . 1 10 * 20 3 1 2 bod y braking related re sistors r bbfb and r bbdr p n/a. the bod y brakin g du ri ng dynami c vid is disa ble d . ir3086 external comp onents pwm ram p resis t or r pw mr mp and capa citor c p w mr mp set pwm ramp magnitude v pwmrmp =0.8v. choo se 220 pf for pwm ramp capa citor c pw mrmp , and calcul ate the resi st o r r pw mrmp , )] ln( ) [ln( pwmrmp dac in dac in pwmrmp sw in o pwmrmp v v v v v c f v v r     :      k 1 . 16 )] 8 . 0 35 . 1 12 ln( ) 35 . 1 12 [ln( 10 * 220 10 * 400 12 33 . 1 12 3 , choo se r p w mrmp =16.2 k  inductor cur r ent sen s ing capaci tor c cs+ and resi stors r cs+ a nd r cs- cho o s e c cs+ =47 n f and calcul ate r cs+, :      k c r l r cs l cs 0 . 10 10 * 47 ) 10 * 47 . 0 /( 10 * 220 9 3 9 the bia s cu rrents of csin+ and cs in- are 0.25 ua a nd 0.4ua re spec tively. cal c ulate resi sto r r cs- , :   k r r cs cs 2 . 6 10 * 0 . 10 4 . 0 25 . 0 4 . 0 25 . 0 3 , choo se r cs- =6. 1 9 k  ov er temperatur e settin g resis t ors r ho tset1 and r ho tset2 use cent ral o v er temp erature setting a nd set th e te mperat ure thresh old at 11 5 o c , which corre s p ond s the ic di e temperature of 116 oc. ca lculate the hotset thre shold voltage corre s p ondin g to the temperatu r e thre shold s . v t v j hotset 79 . 1 241 . 1 116 10 * 73 . 4 241 . 1 * 10 * 73 . 4 3 3     pre-s l ec t r h o tset1 =10.0 k  , :   k v v v r r hotset bias hotset hotset hotset 57 . 3 79 . 1 8 . 6 79 . 1 10 * 10 3 1 2 phase dela y timing resistors r phase1 and r phase2 use cent ral o v er temp erature setting a nd set th e te mperat ure thresh old at 11 5 o c , which corre s p ond s the ic di e temperature of 116 oc. ca lculate the hotset thre shold voltage corre s p ondin g to the temperatu r e thre shold s . page 2 9 of 41 9 /30/04
ir3080 the p h a s e d e lay re si stor ratio s fo r p hases 1 to 6 at 4 0 0 k hz of switching frequ en cie s are ra phas e1 = 0 .628, ra phase2 =0. 415, ra phas e3 = 0 .202, ra phase4 = 0 .246, ra phase5 =0.44 1 an d ra phase6 =0.6 37 sta r ting f r om do wn- slop e. pre-sel e ct r phase11 =r phase21 =r phase31 =r phase41 =r ph ase51 = r pha se61 =10 k  , :   k r ra ra r phase phase phase phase 9 . 16 10 * 10 628 . 0 1 628 . 0 1 3 11 1 1 12 r phase22 =7. 15k  , r phas e32 =2. 5 5 k  , r phase42 =3. 24k  , p phase52 =7. 8 7 k  , r phase62 = 17.4 k  boo t str a p capacitor c bst cho o s e c bst =0. 1 u f deco upling capa citor s for phase ic and po w e r s t age cho o s e c vcc = 0 .1uf, c vccl =0.1uf voltage loop comp ensation type ii comp ensation i s u s ed fo r the co nverter with al-pol ymer o u tput ca pa citors. cho o se the cro s sover freque ncy fc=4 0khz, wh ich is 1/1 0 of the swit chin g freque ncy pe r phase, and d e termin e rcp and c cp . :         k r c f v v r c l f r c c o ramp fb e e c cp 0 . 2 ) 10 * 7 * 10 * 560 * 10 * 40 * 2 ( 1 * ) 10 20 35 . 1 ( 8 . 0 365 ) 10 10 560 ( ) 6 / 10 220 ( ) 10 40 2 ( ) * * * 2 ( 1 * ) 2 ( 2 3 6 3 3 6 9 2 3 2 2 s s s s nf r c l c cp e e cp 71 10 0 . 2 ) 10 * 10 560 ( ) 6 / 10 220 ( 10 10 3 6 9   , choo se c cp =68 n f cho o s e c cp1 =47 p f to red u ce hi gh freq uen cy noise. current s h are loop compens a tion the cro s sove r frequ en cy of the current sha r e loo p f ci shoul d be at least one d e c ad e lower th an that of the voltage loop f c . choo se the cro s so ver frequ en cy of current sh are loo p f ci =4 kh z , a nd calculate c sco m p , 011 . 0 ) 35 . 1 12 ( * ) 35 . 1 8 . 0 12 ( 8 . 0 * 10 * 400 * 10 * 220 * 10 * 2 . 16 ) ( * ) ( * * * 3 12 3        dac i dac pwmrmp i pwmrmp sw pwmrmp pwmrmp mi v v v v v v f c r f 6 _ 10 * 05 . 1 * 2 * )] ( * * * 2 1 [ * * * * * * 65 . 0 ci o mi o o e ci le room cs o i pwmrmp scomp f v f i v c f r g i v r c  s s 6 3 4 4 6 3 3 3 10 * 05 . 1 * 10 * 4 2 ) 10 * 1 . 9 * 105 33 . 1 ( 011 . 0 * ] 105 ) 10 * 1 . 9 * 105 33 . 1 ( * 10 * 10 * 560 * 10 * 4 * 2 1 [ * ) 6 10 * 47 . 0 ( * 34 * 105 * 12 * 10 * 2 . 16 * 65 . 0        s s nf 4 . 31 cho o s e c sc o m p =33nf. page 3 0 of 41 9 /30/04
ir3080 design example 2 - evrd 10 high frequency all-ce ramic converte r specifications input voltage : v i =12 v dac voltag e: v dac = 1 .3 v no lo ad out put voltage o ffset: v o_nlof st =20 mv output current: i o =105 a dc maximum output current: i oma x =120 a dc output imped ance: r o =0. 9 1 m  vcc ready to vcc po wer good delay: t vccpg =0- 1 0 m s vid delay ti me: t vid =2. 5 ms soft start tim e : t ss =2. 9 ms over current delay: t ocde l =2. 1 ms dynami c vid do wn-sl ope slew rate: s r down = 2 .5mv/us over tem perature th re sh old: t pcb =11 5 oc power stage phase num b er: n=6 switchin g fre quen cy: f sw =800 khz output indu ctors: l = 10 0 n h , r l =0.5 m  output ca pa citors: ce ram i c, c=22uf, r c = 2m  , nu mber cn =62 ir3080 external comp onents oscillator resistor ros c once the switching frequ ency i s cho s en, r os c ca n be d e termi ned fro m the cu rve in fig u re 1 3 . fo r swit chin g freque ncy of 800 khz pe r p hase, cho o se r os c =13.3k  vid delay c a pacit o r c vi ddel given vid de lay time t vid =2. 5 ms , the ca pacito r ca n is, nf t c vid viddel 42 91 . 3 10 * 5 . 2 10 * 66 91 . 3 * 10 * 66 3 6 6    , choo se 47 n f soft sta r t c a pacitor c ss/ del and resistor r ss/del bec a us e fast er ove r -cu r re nt prote c tion is requi re d, the soft sta r t ca pa citor c ss/del in series with the res i s t or r ss/del is used. cal c ulate the soft start cap a cito r fro m the requi re d soft start time. uf v t i c o ss chg del ss 16 . 0 10 * 20 3 . 1 10 * 9 . 2 10 * 70 3 3 6 /     , choo se c ss/ del =0.15uf cal c ulate the soft start re si stor fro m the requi re d over current del ay time t ocdel , :       k i c i t r dischg del ss dischg ocdel del ss 1 10 * 6 10 * 15 . 0 10 * 6 10 * 1 . 2 09 . 0 09 . 0 6 6 6 3 / / the s o ft s t art delay time is ms i i r c t chg chg del ss del ss ssdel 6 . 2 10 * 70 ) 10 * 70 * 10 * 1 3 . 1 ( 10 * 15 . 0 ) 3 . 1 ( 6 6 3 6 / /      page 3 1 of 41 9 /30/04
ir3080 the po we r go od delay time is ms i v c t chg o del ss vccpg 85 . 2 10 * 70 ) 3 . 1 28 . 1 91 . 3 ( * 10 * 15 . 0 ) 3 . 1 91 . 3 ( 6 6 /       vdac sle w rate progra mming capa citor c vdac and re sisto r r vdac from figu re 15, the sin k curre n t of v d ac pin corresp ondi ng to 800 khz (r os c =13.3 k  ) i s 1 70ua. cal c ulate the vdac do wn -slop e sle w -ra t e prog rammi ng ca pa citor from the requi red do wn -slo pe sle w rate. nf sr i c down sink vdac 68 10 / 10 * 5 . 2 10 * 170 6 3 6    cal c ulate the prog ram m ing resi stor. :      2 . 1 ) 10 * 68 ( 10 * 2 . 3 5 . 0 10 * 2 . 3 5 . 0 2 9 15 2 15 vdac vdac c r from fig u re 15, the sou r ce curre n t of vdac pin i s 25 0ua. the vdac up-slo pe sle w rate is us mv c i sr vdac source up / 7 . 3 10 * 68 10 * 250 9 6   ov er current setting res i stor r o c set the room te mperature is 25oc an d the target p c b t e mpe r at ure i s 1 00 o c . th e pha se ic di e tempe r atu r e is abo ut 1 oc high er tha n that of phase ic, and the indu ct or temp eratu r e is clo s e to pcb temperature. cal c ulate ind u ctor dc re si stan ce at 100 oc, :        m t t r r room max l room l max l 64 . 0 )] 25 100 ( 10 * 3850 1 [ 10 * 5 . 0 )] ( 10 * 3850 1 [ 6 3 _ 6 _ _ the cu rrent sense amplifie r gain is 3 4 at 25oc, and its gain at 101o c is calculate d as, 2 . 30 )] 25 101 ( 10 * 1470 1 [ 34 )] ( 10 * 1470 1 [ 6 _ 6 _ _       room max ic room cs min cs t t g g set the over current limit at 135a. from fi gu re 1 4 , the bias curre n t of ocset pin (i o c set ) is 90ua with r os c =13.3 k  . the total current sen s e amplifier inp u t offset volt ag e is 0.55 mv, whi c h i n cl ude s the offset created by the curre n t se nse am plifier input re sisto r mismat ch. cal c ulate con s tant k p, the ratio of induct o r pea k curre n t ov er avera ge cu rrent in each pha se, 32 . 0 6 / 135 ) 2 10 * 800 12 10 * 100 /( 28 . 1 ) 28 . 1 12 ( / ) 2 /( ) ( 3 9    n i f v l v v v k limit sw i o o i p ocset min cs tofst cs p max l limit ocset i g v k r n r r / ] ) 1 ( [ _ _ _   :     k 34 . 6 ) 10 * 90 /( 2 . 30 * ) 10 * 55 . 0 32 . 1 10 * 64 . 0 6 135 ( 6 3 3 no load output voltag e setting resi stor r fb and adap tiv e voltage positio n ing resis t o r r drp from fig u re 14, the bias current of fb pin is 90ua wit h r os c =13.3 k  . :         162 10 * 64 . 0 * 10 * 90 10 * 91 . 0 6 10 * 55 . 0 10 * 20 10 * 64 . 0 3 6 3 3 3 3 _ _ _ _ max l fb o tofst cs nlofst o max l fb r i r n v v r r page 3 2 of 41 9 /30/04
ir3080 :   576 10 * 91 . 0 6 2 . 30 * 10 * 64 . 0 162 3 3 _ _ o min cs max l fb drp r n g r r r con t rol ic o v er tempera t ure se tting resis t ors r hotset c1 and r ho tsetc2 set the temp eratu r e th re shold at 115 oc, which co rre sp ond s th e ic die tem peratu r e of 1 16 o c . calcu l ate the hotset thre shol d voltage corre s po ndin g to the temperatu r e thre shold s . v t v j hotset 79 . 1 241 . 1 116 10 * 73 . 4 241 . 1 * 10 * 73 . 4 3 3     , choo se r hotsetc1 =10.0k  , :   k v v v r r hotset bias hotset hotsetc hotsetc 57 . 3 79 . 1 8 . 6 79 . 1 10 * 10 3 1 2 bod y braking related re sistors r bbfb and r bbdr p n/a. the bod y brakin g du ri ng dynami c vid is disa ble d . ir3086 external comp onents pwm ram p resis t or r pw mr mp and capa citor c p w mr mp set pwm ra mp magnitu d e v pwmrmp =0.75v. choo se 100pf fo r pwm ram p capa citor c p w mrmp , and ca lculate the resi st o r r pw mrmp , )] ln( ) [ln( * * * pwmrmp dac in dac in pwmrmp sw in o pwmrmp v v v v v c f v v r     :      k 2 . 18 )] 75 . 0 3 . 1 12 ln( ) 3 . 1 12 [ln( 12 10 * 100 3 10 * 800 12 28 . 1 inductor cur r ent sen s ing capaci tor c cs+ and resi stors r cs+ a nd r cs- cho o se 47nf for cap a cito r c cs+ and cal c ulate r cs+, :      k c r l r cs l cs 22 . 4 10 * 47 ) 10 * 5 . 0 /( 10 * 100 9 3 9 the bia s cu rrents of csin+ and cs in- are 0.25 ua a nd 0.4ua re spec tively. cal c ulate resi sto r r cs- , :   k r r cs cs 61 . 2 10 * 22 . 4 4 . 0 25 . 0 4 . 0 25 . 0 3 combined o v er tempera t ure an d pha se delay setting re sistor s r phasex1 , r phasex2 and r phasex3 the over tem peratu r e setting re sisto r di vider is co mb ined wi th the pha se delay resi stor divide r. set the temperatu r e threshold at 115 o c , whi c h corre s po nd s the ic die temper ature of 116 o c , a nd cal c ulate the hotset thre sh old voltage co rre s po ndin g to the tempe r atu r e thre sh old s . v t v j hotset 79 . 1 241 . 1 116 10 * 73 . 4 241 . 1 10 * 73 . 4 3 3     the p h a s e d e lay re si stor ratio s fo r p hases 1 to 6 at 8 0 0 k hz of switching frequ en cie s are ra phas e1 = 0 .665, ra phase2 =0. 432, ra phas e3 = 0 .198, ra phase4 = 0 .206, ra phase5 =0.40 1 an d ra phase6 =0.5 97 sta r ting f r om do wn- slop e. page 3 3 of 41 9 /30/04
ir3080 the over te mperature se tting voltage of phases 1, 2, 5, and 6 is lowe r tha n the pha se delay setting voltage, vbias*ra phasex . pre-selec t r phase11 =10 k  , :     k ra v r v v ra r phasex bias phasex hotset bias phasex phasex 1 . 12 ) 665 . 0 1 ( 8 . 6 10 * 10 ) 79 . 1 8 . 6 665 . 0 ( ) 1 ( * ) ( 3 1 2 :   k ra v r v r phasex bias phasex hotset phasex 87 . 7 ) 665 . 0 1 ( * 8 . 6 10 * 1 . 12 79 . 1 ) 1 ( * 3 1 3 r phase21 = 10k  , r phase22 =2. 9 4 k  , r p h ase23 =4. 6 4 k  r phase51 = 10k  , r phase52 =2. 3 2 k  , r p h ase53 =4. 4 2 k  r phase61 = 10k  , r phase62 =8. 2 5 k  , r p h ase63 =6. 4 9 k  the over tem peratu r e setting voltage of phase s 3 a n d 4 is highe r than the pha se delay setting voltage, vbias*ra phasex . pre-selec t r phasex1 =10 k  , :     887 79 . 1 8 . 6 10 * 10 ) 8 . 6 198 . 0 79 . 1 ( ) ( 3 31 3 32 hotset bias phase bias phase hotset phase v v r v ra v r :   k v v r v ra r hotset bias phase bias phase phase 67 . 2 79 . 1 8 . 6 10 * 10 8 . 6 198 . 0 * 3 31 3 33 r phase41 = 10k  , r phase42 =76 8  , r pha se43 =2. 8 0 k  boo t str a p capacitor c bst cho o s e c bst =0. 1 u f deco upling capa citor s for phase ic and po w e r s t age cho o s e c vcc = 0 .1uf, c vccl =0.1uf voltage loop comp ensation type iii compensation is used for the converter with only cerami c output capacitors. the crossover frequency and pha se ma rgin of the voltage loop can be estimated a s follows. khz r r g c r f le fb cs e drp c 146 ) 6 / 10 * 5 . 0 ( 162 34 ) 10 * 22 62 ( 2 576 2 3 6 1   s s q  63 180 ) 5 . 0 tan( 90 1 s t a c cho o s e : 110 162 3 2 3 2 1 fb fb r r cho o se the d e sired cro s so ver frequ en cy fc (=1 4 0 k hz) aroun d fc1 e s timated ab o v e, and cal c ul ate nf r f c fb c fb 2 . 5 110 10 * 140 4 1 4 1 3 1 s s , choo se c fb =5. 6 n f nf r c r r c drp fb fb fb drp 7 . 2 576 10 * 6 . 5 ) 110 162 ( ) ( 9 1    page 3 4 of 41 9 /30/04
ir3080 :     k v v r c l f r o ramp fb e e c cp 65 . 1 10 * 20 3 . 1 75 . 0 * 162 ) 62 10 * 22 ( ) 6 / 10 * 100 ( ) 10 * 140 2 ( ) 2 ( 3 6 9 2 3 2 s s nf r c l c cp e e cp 27 10 65 . 1 ) 62 * 10 * 22 ( ) 6 / 10 * 100 ( 10 10 3 6 9   cho o s e c cp1 =47 p f to red u ce hi gh freq uen cy noise. current s h are loop compens a tion the cro s sove r frequ en cy of the current sha r e loo p f ci shoul d be at least one d e c ad e lower th an that of the voltage loop f c . choo se the cro s so ver frequ en cy of current sh are loo p f ci =3 . 5 kh z , a nd ca lculate c sco m p , 011 . 0 ) 3 . 1 12 ( * ) 3 . 1 75 . 0 12 ( 75 . 0 * 10 * 800 * 10 * 100 * 10 * 2 . 18 ) ( * ) ( * * * 3 12 3        dac i dac pwmrmp i pwmrmp sw pwmrmp pwmrmp mi v v v v v v f c r f 6 _ 10 * 05 . 1 * 2 * )] ( * * * 2 1 [ * * * * * * 65 . 0 ci o mi o o e ci le room cs o i pwmrmp scomp f v f i v c f r g i v r c  s s 6 4 4 6 3 3 10 * 05 . 1 * 3500 2 ) 10 * 1 . 9 * 105 33 . 1 ( 011 . 0 * ] 105 ) 10 * 1 . 9 * 105 33 . 1 ( * 62 * 10 * 22 * 3500 * 2 1 [ * ) 6 10 * 5 . 0 ( * 34 * 105 * 12 * 10 * 2 . 18 * 65 . 0        s s nf 6 . 20 cho o s e c sc o m p =22nf page 3 5 of 41 9 /30/04
ir3080 layout guidelines the followi ng layout guideli nes a r e reco mmend ed to redu ce the p a r asiti c indu cta n ce a nd re si stance of the pcb layout, therefore minimi zin g the noise couple d to the ic. x dedi cate at le ast one mid d l e layer for a g r oun d plan e l g nd. x con n e c t the grou nd tab u nder the cont rol ic to lg nd plan e throu gh a via. x place th e foll owin g critical comp one nts on the sa me l a yer a s cont rol ic a nd position them a s clo s e a s po ssible to the re spe c tive pins, r os c , r o c set , r vdac , c vda c , c vcc , c ss /del and r cc/del . avoid using any via for th e c o nn ec tio n . x place th e co mpen sation compon ents o n the sam e la yer a s cont rol ic a nd po sition them a s cl ose a s p o ssi b le to eaout, fb and vdrp pi n s . avoid usin g any via for the co nne ctio n. x use kelvin conne ction s fo r the remote voltage sen s e si g nal s, vo sns+ a nd v o sns-, a nd avoid cro s sin g over the fast tran si tion node s, i.e. switching n ode s, gate dri v e signal s an d bootst rap n ode s. x control bu s sign als, vda c , rmpo ut, iin, vbias, and e s p e ci a lly eaout, sho u ld n o t cross over th e fast transitio n nod es. page 3 6 of 41 9 /30/04
ir3080 pcb me tal a nd compon e n t placemen t x lead l and wi dth sh ould be equal to no minal pa rt lea d width. t h e minimum le a d to lead sp a c ing sh ould be ? 0.2mm t o minimize sh orting. x lead la nd len g th sho u ld be equal to max i mum part le a d length + 0. 2 mm outboa rd exten s ion + 0.05mm inboa rd exte nsio n. the o u tboard exte nsio n en sure s a large an d inspe c tabl e toe fillet, and the inboa rd extension will accommodat e any part mi salignment and ensure a fillet. x cente r p ad la nd len g th a n d width sh ould be e qual to maximum p a rt pad le ngth a nd wi dth. ho wever, th e minimum met a l to m e tal sp acin g sho u ld be ? 0.1 7 mm for 2 o z . cop per ( ? 0.1m m for 1 o z . cop per and ? 0.23mm for 3 oz. cop per) x a single 0.30 mm diamete r via shall be pl ace d in t he center of the p ad land a nd conne cted to g r oun d to minimize the noise effec t on the ic. page 3 7 of 41 9 /30/04
ir3080 solder resis t x the solde r re sist shoul d be pulled a w ay from the me t a l lead lan d s by a minimu m of 0.06mm. the sold er resi st mis-ali gnment is a maximum of 0.05mm and it is recom m ende d that the lead land s are all no n solder mask defined (ns m d). theref ore pulli ng the s/r 0.06m m will alwa y s ensure nsm d pads. x the mini mu m sol der re sist width i s 0.13mm, the r ef ore it is recom m en ded that the sol der re sist i s compl e tely re moved from betwe en the lead land s fo rming a si ngl e openin g for each ?g rou p ? of lead land s. x at the inside corne r of the sold er resi st whe r e the le a d land g r ou ps meet, it is re comm end ed to provid e a fillet so a solder resi st widt h of ? 0.17m m remain s. x the land p a d should b e solder ma sk defined (sm d ), with a minimum overla p of the solder resi st onto the cop p e r of 0.06mm to a c commo date sold er resi st mi s-alignm en t. in 0.5mm pitch cases it is allo wabl e to have the solder re sist o penin g for the land pad to b e smalle r tha n the part pa d. x ensu re that t he solde r re sist in-betwee n the le ad la nds and the pad la nd i s ? 0.15mm due to the hig h asp e ct ratio o f the solder re sist st rip sepa rating the lea d land s from the pad la nd. x the single via in the l and pad sho u ld b e tented with sold er re sist 0.4mm dia m e t er, or 0.1mm larg er tha n the diamete r of the via. page 3 8 of 41 9/ 3 0 / 0 4
ir3080 stencil de sign x the sten cil a pertu re s for t he lea d lan d s shoul d be approximatel y 80% of the are a of the lead la nd s. red u ci ng the amount of solder dep osit ed will mini mi ze the o c cu rrence of lead sho r ts. since for 0.5mm pitch devi c e s the lead s are only 0.25m m wide, t he sten cil ape rt ure s shoul d not be mad e narrower; openi ng s in stencil s < 0.25 mm wide a r e difficult to maintain rep eata b le sol der rel ease. x the sten cil le ad la nd a p e r ture s sho u ld t herefo r e be shorten ed i n le ngth by 80% and ce ntere d on the lea d land. x the la nd pa d ap ertu re sho u ld be striped with 0.25mm wid e op enin g s and sp aces to de po sit approximatel y 50% area of solder on th e cente r pad. if too much sold er is de p o sited on the center pa d the part will float and the le ad land s will be ope n. x the maximu m length and width of the land pad st encil a pertu re sho u ld be equal to the sold er resi st openi ng min u s an ann ular 0.2mm pull b a ck to de crea se t he i n ci de nce of sh ortin g the center l and to the lead lan d s wh en the part is pushed into t he sol der p a ste. page 3 9 of 41 9/ 3 0 / 0 4
ir3080 typical perform ance characte r istics fi gur e 13 - o s c i l l a t or f r equenc y ve r s us r o s c 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 55 0 60 0 65 0 70 0 75 0 80 0 85 0 90 0 95 0 10 00 10 15 2 0 25 3 0 3 5 40 4 5 50 55 6 0 65 7 0 75 80 8 5 90 95 1 0 0 ro s c ( k o h m s ) o s c i l l a t or fr e que nc y ( k h z ) f i g u re 1 4 - if b , b b f b , & oc s e t b i a s c u rr e n ts v s r o s c 5 15 25 35 45 55 65 75 85 95 10 5 11 5 12 5 10 15 20 2 5 30 35 40 4 5 50 5 5 60 65 7 0 7 5 80 85 9 0 95 1 0 0 ro s c ( k o h m ) ua fi g u r e 15 - v d a c s o u r ce & s i nk c u r r ent s vc r o s c ( i ncl udes o c s e t bi a s cur r e n t ) 0 25 50 75 10 0 12 5 15 0 17 5 20 0 22 5 25 0 27 5 30 0 32 5 10 2 0 30 4 0 50 60 70 80 90 100 110 120 130 14 0 r o s c ( k ohm ) ua is in k is o u r c e fi gu r e 1 6 - b i as c u r r e n t a ccur acy ve r s us r o sc ( i n c l u d e s t e m p er at ur e and i n put vol t a g e va r i a t i o n ) 0% 2% 4% 6% 8% 10 % 12 % 14 % 16 % 18 % 10 20 3 0 4 0 50 60 70 80 90 100 110 120 130 1 4 0 ro s c ( k o h m ) + / -3 s i g m a v a r i ati o n (% ) f b , bb f b , o c se t bi a s cu r r e n t v d a c s i nk c u rrent v d a c s ourc e c u rrent page 4 0 of 41 9/ 3 0 / 0 4
ir3080 package information 32l mlpq (5 x 5 mm body ) ?


▲Up To Search▲   

 
Price & Availability of IR3080MTR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X